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Preface

The 20th Symposium on the Interface: Computing Science and Statistics was held on April
20th through 23rd, 1988. The 20th Symposium on the Interface was in a number of senses a watershed
event for the Interface series. Begun in 1967 in Southern California as a one-day workshop meeting
under the guidance of Arnie Goodman and Nancy Mann, it had matured over the years to a rather
large scale event. The Board of Governors of the 18th Interface appointed an ad hoc committee to
investigate incorporation of the Interface to preserve its financial and intellectual independence. At the
19th Interface a plan was presented by one of us (EJW) which included bylaws and a plan for
incorporation. This plan was approved and in August of 1987, the Interface Foundation of North
America, Inc. was formed as a pon-profit, education corporation as the legal underpinning for the
Interface Symposium series. The 20th Symposium was the first sponsored under the Interface
Foundation banner. It was an auspicious start with a 50% increase in attendance, with the number of
contributed papers nearly doubled, and with a healthy support from the federal funding agencies.

At the 18th Interface, much of the discussion in executive session focused on the direction of
the meetings. The vision for the Interface Symposia obviously drew its focus from the interplay of
computer science and statistics. While this was a largely unexplored area in 1967, the interface, in
fact, has matured substantially and many of us thought that the interface was simply too broad and
unfocused to remain the general theme of the Symposium. The 19th Interface Symposium, already
well underway at that stage, was developed around the theme of Large Scale Statistical Computing.
The 20th Interface Symposium was, in f{act, developed from first blush with the theme of
Computationally Intensive Statistical Methods. Much of factual detail about the 20th Symposium is
contained in the front pages immediately following this Preface, e.g. lists of people involved, the past
Interface Symposia, exhibitors, cooperating societies, the program schedule and the listing of papers in
the technical program. We hope that these will be of interest.

We have, however, broken with past tradition which has organized the Proceedings around the
format of the technical program. As with any Symposium, speakers often exhibit variances with the
formal session titles in which they are scheduled to speak. In addition, when a theme is announced, it
is often the case that contributed papers closely related to the themes of invited paper sessions are also
submitted. We felt that, the Symposium now being history, it would be better to organize the
Proceedings around the logical themes of the papers actually submitted for the Proceedings and making
comparatively little distinction between what were invited papers and contributed papers. The clusters
of papers are our choice and others may quibble with the classifications we made. Nonetheless, we
hope that the organization of this volume makes logical sense to the reader and, more importantly,
that the reader finds it to be useful.

Our major remaining task is to thank those people and organizations responsible for the success
of the meeting. A major contributor to the success was our secretary, Jan P. Guenther. Many of the
organization details that are attributed to the Program Chairman were in fact her ideas and we wish to
publicly acknowledge our debt to her. A number of our graduate students, notably Masood
Bolorforoush, Hung T. Le, Celesta Ball and Dale Penner spent long days in preparation and execution
of many of the details. We also would like to acknowledge the patience of our families, notably the
Wegman and the Guenther families, during the perparatory phases of the Symposium. The co-
operating societies and organizations should be acknowledged as well. They are listed later in the
program. Speciul note should be made of the Institute of Mathematical Statistics, the National
Computer Graphics Association, the American Mathematical Society and the Society for Industrial and
Applied Mathematics, cach of which provided the Symposium organizers with free access to their
membership lists. The National Bureau of Standards, now the National Institute of Standards and
Engineering, printed the original announcement and mailed both the first and second sets of
announcements.

The 20th Interface Symposium, as has been already mentioned, was the beneficiary of funding
from several government agencies including the Air Force Office of Scientific Research under grant

iii




number AFOSR-88-0154, the Army Research Office under grant number DAALO03-88-G-0020, the
National Science Foundation under grant number DMS-8722898 and the Office of Naval Research
under grant number N00014-88-J-1049. The editorial work of EJW on this volume was supported by
the Air Force Office of Scientific Research under grant number AFOSR-87-0179, the Army Research
Office under contract number DAALO03-87-K-0087, the National Science Foundation under grant
number DMS-8701931 and the Virginia Center for Innovative Technology under contract number
CIT/SPC-87-005. The !atter contract also supported a portion of Jan Guenther’s work.

Edward J. Wegman
Donald T. Gantz
John J. Miller
Fairfax, Virginia
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Chair: James Gentle
Keynote Speaker: Richard Hamming

Chair: Lynne Billard
Keynote Speaker: George Marsalgia

Chair: David Allen
Keynote Speaker: John C. Nash




Past Interface Symposia (Continued)

Colorado State University, 1986 Chair: Thomas Boardman
18th Symposium Keynote Speaker: John Tukey
Temple University (held in Phi'adelphia), 1987 Chair: Richard Heiberger
19th Symposium Keynote Speaker: Gene Golub
George Mason University, 1988 Chair: Edward J. Wegman
20th Symposium Keynote Speaker: Brad Efron

Future Interface Symposia

University of South Florida, 1989 Chairs: Ken Berk and Linda Malone
21st Symposium

Michigan State University, 1990 Chair: Raoul LePage
22nd Symposium

General Information

The 20th Symposium represents a milestone in the development of the interface between
computing science and statistics. In August, 1987 the Interface Foundation of North America was
incorporated as a non-profit, educational corporation whose main charter is to provide the legal entity
underpinning the Symposium series. The Foundation represents a maturation of the Symposium series
and ensures its continuation as an independent meeting focused on the interface. The 20th Symposium
is the first held under the auspices of the Foundation.

Theme: — Computationally Intensive Statistical Methods

Keynote Address: — “Computationally intensive statistical inference”
Bradley Efron, Department of Statistics, Stanford University

Invited Papers: — There are 60 invited papers including several with invited discussion organized into
23 sessions. In addition to the plenary session with the keynote address by Brad Efron, there are three

special invited lectures featuring Jerome Friedman, George E. P. Box and Thomas Banchoff.

Contributed Papers: — There are 128 contributed papers scheduled in 26 sessions.

Exhibitors
Ametek Computer Corporation North Holland/Elsevier Publishers
606 East Huntington Drive P. O. Box 1991
Monrovia, CA 91016 1000 BZ Amsterdam
(714) 599-4662 The Netherlands
Automatic Forecasting Systems, Inc. Numerical Algorithms Group
P. O. Box 563 1101 31st Street, Suite 100
Hatboro, PA 19040 Downers Grove, IL 60515
(215) 675-0652 (312) 971-2337
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BBN Software

10 Fawcett Street
Cambridge, MA 02238
(617) 873-8116

BMDP Statistical Software, Inc.
1440 Sepulveda Boulevard, Suite 316
Los Angeles, CA 90025

(213) 479-7799

Intel Scientific Computers
15201 NW Greenbrier Parkway
Beaverton, OR 97006

(503) 629-7631

Marcel-Dekker, Inc.
270 Madison Avenue
New York, NY 10016
(212) 696-9000

IMSL, Inc.

2500 ParkWest Tower One
2500 CityWest Boulevard
Houston, TX 77042-3020
(713) 782-6060

Springer-Verlag, Inc.
175 Fifth Avenue
New York, NY 10010
(212) 460-1600

SYSTAT, Inc.

1800 Sherman Avenue
Evanston, IL 60201
(312) 864-5670

TCI Software

1190 Foster Road

Las Cruces, NM 88001
(505) 522-4600

Tektronix, Inc.

M.S. 48-300, Industrial Park
Beaverton, OR. 97077

(503) 627-7111

Wadsworth & Brooks/Cole
Advanced Books and Software
10 Davis Drive

Belmont, CA 94002

(415) 595-2350

Short Course

Forecasting on the IBM-PC - A Survey, Wednesday, April 20, 9:00 a.m. to 4:30 p.m., David P. Reilly,
Automatic Forecasting Systems, Inc., P. O. Box 563, Hatboro, PA 19040, (215) 675-0652

Cooperating Societies

American Mathematical Society
P. O. Box 6248
Providence, RI 02940

American Statistical Association
1429 Duke Street
Alexandria, VA 22314

International Association for Statistical Computing
NTDH

P. O. Box 145

N-7701 Steinkjer

Norway

Institute of Mathematical Statistics
3401 Investment Boulevard, Suite 7
Hayward, CA 94545

National Computer Graphics Association
2722 Merilee, Suite 200
Fairfax, VA 22031
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Operations Research Society of America
Mount Royal and Guilford Avenues
Baltimore, MD 21202

Society for Industrial and Applied Mathematics
1400 Architects Building

117 South 17th Street

Philadelphia, PA 19103

Virginia Academy of Science Chapter of ASA
c/o Golde I. Holtzman

Department of Statistics

Virginia Tech

Blacksburg, VA 24061

Washington Statistical Society
P. O. Box 70843
Washington, DC 20024-0843




Program Schedule

Date and Time Session Title

Thursday, April 21

8:45 a.m. - 9:45 a.m. Keynote Address: Computationally Intensive Statistical
Inference

10:00 a.m. - 12:00 noon Computational Aspects of Time Series Analysis

Inference and Artificial Intelligence

Computational Discrete Mathematics

Contributed: Software Tools

Contributed: Image Processing I

Contributed: Bootstapping and Related Computational
Methods

1:30 p.m. - 3:30 p.m. Special Invited Lecture 1
Image Processing and Spatial Processes
Parallel Computing Architectures
Contributed: Statistical Methods I
Contributed: Hardware and Software Reliability
Contributed: Applications I

3:45 p.m. - 5:45 p.m. Special Invited Session for Recent Ph.D.’s
Simulation
Symbolic Computation and Statistics
Contributed: Statistical Graphics
Contributed: Models of Imprecision in Expert Systems
Contributed: Time Series Methods

Friday, April 22

8:00 a.m. - 10:00 p.m. Computer-Comrnunication Networks
Supercomputing, Design of Experiments and Bayesian

Analysis, Part 1

Numerical Methods in Statistics
Contributed: Probability and Stochastic Processes
Contributed: Statistical Methods II
Contributed: Nonparametric and Robust Techniques

10:15 a.m. - 12:15 p.m. Special Invited Lecture II
Supercomputing, Design of Experiments and Bayesian
Analysis, Part 2
Neural Networks
Contributed: Applications II
Contributed: Image Processing 11
Contributed: Simulation I
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2:00 p.m. - 4:00 p.m.

Saturday, April 23

8:30 a.m. - 10:30 a.m.

10:45 a.m. - 12:45 p.m.

9:00 a.m. - 4:30 p.m.

Tales of the Unexpected: Successful
Interdisciplinary Research

Density Estimation and Smoothing

Object Oriented Programming

Contributed: Numerical Methods

Contributed: Bayesian Methods

Contributed: Expert Systems in Statistics

Computational Aspects of Simulated Annealing
Dynamical High Interaction Graphics
Contributed: Statistical Methods III
Contributed: Simulation II

Contributed: Biostatistics Applications
Contributed: Discrete Mathematical Methods

Special Invited Lecture I1I

Entropy Methods

Contributed: Information Systems, Databases and Statistics
Contributed: Parallel Computing

Contributed: Density and Function Estimation
Contributed: Statistical Methods IV

Technical Program

WEDNESDAY, APRIL 20, 1988

Short Course - Forecasting on the IBM-PC, David Reilly, Automatic Forecasting Systems,

Inc.

8:45 a.m. - 9:45 a.m.

THURSDAY, APRIL 21, 1988

Plenary Session, Chaired by: Edward J. Wegman, George Mason University

“Computationally intensive statistical inference,” Bradley Efron, Stanford University

10:00 a.m. - 12:00 noon

Computational Aspects of Time Series Analysis, Chaired by: Emanuel Parzen,

Texas A & M University

“Recent progress in algorithms and architectures for time series analysis,” George Cybenko,

Tufts University

“Numerical approach to non-gaussian smoothing and its application,” Genshiro Kitagawa,
The Institute of Statistical Mathematics

Discussants - Will Gersch, University of Hawaii and H. Joseph Newton, Texas A & M

University




THURSDAY, APRIL 21, 1988

10:00 a.m. - 12:00 noon

Inference and Artificial Intelligence, Chaired by: N. Singpurwalla, George Washington
University

“Spectral Analysis on a LISP machine,” Don Percival, University of Washington

“DeFinetti’s approach to group decision making,” Richard Barlow, University of California,
Berkeley

“Meta-analysis,” Ingram Olkin, Stanford University

10:00 a.m. - 12:00 noon
Computational Discrete Mathematics, Chaired by: Rich Ringeisen, Clemson University

“Discrete structures and reliability computations,” James P. Jarvis, Clemson University
and Douglas R. Shier, College of William and Mary

“Random graphs,” Edward R. Scheinerman, The Johns Hopkins University
“Structure and finiteness conditions on graphs,” Neil Robertson, Ohio State University
10:00 a.m. - 12:00 noon

Contributed Papers: Software Tools, Chaired by: Leonard Hearne, George Mason
University

“An introduction to CART*™: classification and regression trees,” Gerard T. LaVarnway,
Norwich University

“Noise appreciation: analyzing residuals using RS/Explore,” David A. Burn and Fanny
O’Brien, BBN Software Products Corporation

“COSTAR: an environment for computer-guided data analysis,” David A. Whitney and
Ilya Schiller, TASC

“A closer look at symbolic computation,” William M. Makuch, General Electric Corporation
and John W. Wilkinson, Rensselaer Polytechnic Institute

10:00 a.m. - 12:00 noon
Contributed Papers: Image Processing I, Chaired by: A. K. Sood, George Mason University

“Image analysis of a turbulent object using fractal parameters,” Amar Ait-Kheddache,
North Carolina State University

“Identification of closed figures,” Jeff Banfield, Montana State University and Adrian
Raftery, University of Washington

“Compression of image data using arithmetic coding,” Ahmed H. Desoky and Thomas
Klein, University of Louisviile
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“Image analysis of the microvascular system in the rat cremaster muscle,” C. O’Connor,
P. D. Harris, A. Desoky and G. Ighodaro, University of Louisville

“Automatic detection of the optic nerve in color images of the retina,” Norman Katz,
Subhasis Chaudhuri, and Michael Goldbaum, University of California, San Diego and
Mark Nelson, Radford Company

10:00 a.m. - 12:00 noon
Contributed Papers: Bootstrapping and Related Computational Methods, Chaired by:
Richard Bolstein, George Mason University

“A Monte Carlo study of cross-validation and the C, criterion for model selection in
multiple linear regression,” Robert M. Boudreau, Virginia Commonwealth University

“Bootstrapping regression strategies,” David Brownstone, University of California, Irvine

“Bootstrapping the missed regression model with reference to the capital and energy
complementarity debate,” Baldev Raj, Wilfred Laurier University

“Efficient data sensitivity computation for maximum likelihood estimation,” Daniel Chin
and James C. Spall, The Johns Hopkins University

“Bootstrap procedures in random effect models for comparing response rates in multi-center
clinical trials,” Michael F. Miller, Hoechst-Roussel Pharmaceuticals, Inc.

1:30 p.m. - 2:45 p.m.
Special Invited Lecture I, Chaired by: Jim Filliben, National Bureau of Standards

“Fitting functions to scattered noisy data in high dimensions,” Jerome Friedman,
Stanford University

1:30 p.m. - 3:30 p.m.
Image Processing and Spatial Processes, Chaired by: Don McClure, Brown University

Introduction, Don McClure, Brown University

“A multilevel-multiresolution technique for image analysis and robot vision via
renormalization group ideas,” Basilis Gidas, Brown University

“A mathematical approach to expert system construction,” Alan Lippman, Brown
University

xxii




THURSDAY, APRIL 21, 1988

1:30 p.m. - 3:30 p.m.
Parallel Computing Architectures, Chaired by: Chris Brown, University of Rochester

“Experiences with the BBN Butterfly'™ parallel processor,” John Mellor-Crummy,
University of Rochester

“Statistical computing on a hypercube,” George Ostrouchov, Oak Ridge National Lab
“Asychronous iteration,” William F. Eddy and Mark Schervish, Carnegie-Mellon University
1:30 p.m. - 3:30 p.m.

Contributed Papers: Statistical Methods I, Chaired by: Walter Liggett, National Bureau of
Standards

“An example of the use of a Bayesian interpretation of multiple discriminant analysis
results,” James R. Nolan, Siena College

“Real-time classification and discrimination among components of a mixture distribution,”
Douglas A. Samuelson, International Telesystems Corporation

“Comparison of three ‘local model’ classification methods,” Daniel Normolle, University of
Michigan

“Application of posterior approximation techniques for the ordered Dirichlet distribution,”
Thomas A. Mazzuchi and Refik Soyer, George Washington University

“Unbiased estimates of multivariate general moment functions of the population and
application to sampling without replacement for a finite population,” Nabih N. Mikhail,
Liberty University

1:30 p.m. - 3:30 p.m.

Contributed Papers: Hardware and Software Reliability, Chaired by: Asit Basu, University
of Missouri

“Linear prediction of failure times ol a repairable system,” M. Ahsanullah, Rider College

“The simulation of life tests with random censoring,” Joseph C. Hudson, GMI Engineering
and Management Institute

“The use of general modified exponential curves in software reliability modeling,”
Taghi M. Khoshgoftaar, Florida Atlantic University

“A model for information censoring,” William A. Link, Patuxent Wildlife Research Center

“Increasing reliability of multiversion fault-tolerant software design by modulation,” Junryo
Miyashita, California State University, San Bernardino
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1:30 p.m. - 3:30 p.m.

Contributed Papers: Applications I, Chaired by: Susannah Schiller, National Bureau of
Standards

“Classifying linear mixtures with an application to high resolution gas chromatography,”
William S. Rayens, University of Kentucky

“Bias of animal trend estimates,” Paul H. Geissler and William A. Link, Patuxent Wildlife
Research Center

“A non-random walk through futures prices of the British pound,” William S. Mallios,
California State University, Fresno

“A stochastic extension of Petri net graph theory,” L. M. Anneberg, Wayne State University
“Neural Petri nets,” N. H. Chamas, Wayne State University

3:45 p.m. - 5:45 p.m.
Special Invited Session for Recent Ph.D.’s, Chaired by: Johr J. Miller, George Mason

University

“Additive principal components: a method for estimating equations with small variance
from multivariate data,” Deborah Donnell, Bellcore

“Gamma processes, paired comparisons and ranking,” Hal Stern, Harvard University
“Smoothing data with correlated errors,” Naomi Altman, Cornell University

“The Aata viewer: program for graphical data analysis,” Catherine Hurley, University of
Waterloo

3:45 p.m. - 5:45 p.m.
Simulation, Chaired by: Donald T. Gantz, George Mason University

“Random var:ables for supercomputers,” George Marsaglia, Florida State University

“Computational statistics in experimental design for studies of variability,” John Ramberg,
University of Arizona

“Linear combinations of estimators of the variance of the sample mean,” Bruce W.
Schmeiser, Purdue University

XXiv




THURSDAY, APRIL 21, 1988

3:45 p.m. - 5:45 p.m.
Symbolic Computation and Statistics, Chaired by: William S. Rayens, University of
Kentucky

“Some applications of symbol manipulation in statistical analysis,” Kathryn M. Chaloner,
University of Minnesota

“Symbolic computation in statistical decision theory,” Marietta Tretter, Texas A & M
University

“Partial differentiation by computer with applications to statistics,” John W. Sawyer, Jr.,
Texas Tech University

3:45 p.m. - 5:45 p.m.
Contributed Papers: Statistical Graphics, Chaired by: Robert Launer, Army Research
Office

“Visual multidimensional geometry with applications,” Alfred Inselberg, IBM Scientific
Center, Los Angeles and Bernard Dimsdale, University of California

“Some graphical representations of multivariate data,” Masood Bolorforoush and
Edward J. Wegman, George Mason University

“Graphical representations of main effects and interaction effects in a polynomial regression
on several predictors,” William DuMouchel, BBN Software Products Corporation

“Chernoff faces: a PC implementation,” Mohammad Dadashzadeh, University of Detroit
3:45 p.m. - 5:45 p.m.

Contributed Papers: Models of Imprecision in Expert Systems, Chaired by:

Mark Youngren, George Washington University

“Fusion and propagation of giaphicai belief models,” Russell Almond, Harvard University

“Belief function computations for paired comparisons,” David Tritchler and Gina Lockwood,
Ontario Cancer Institute

“Variants of Tierney-Kadane,” Guenter Weiss and H. A. Howlader, University of Winnepeg

“Dynamically updating relevance judgements in probabilistic information systems via users’
feedback,” Peter Lenk and Barry D. Floyd, New York University

“Computational requirements for inference methods in expert systems: a comparative
study,” Ambrose Goicoechea, George Mason University
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3:45 p.m. - 5:45 p.m.
Contributed Papers: Time Series Methods, Chaired by: Neil Gerr, Office of Naval
Research

“Inference techniques for a class of exponential time series,” V. Chandrasekar and
Peter Brockwell, Colorado State University

“Some recursive methods in time series analysis,” Q. P. Duong, Bell Canada

“Time series in a microcomputer environment,” John Henstridge, Numerical Algorithms
Group

“Smoothing irregular time series,” Keith W. Hipel, University of Waterloo, A. I. McLeod,
The University of Western Ontario and Byron Bodo, Ministry of the Environment

“Computation of the theoretical autocovariance function of multivariate ARMA processes,”
Stefan Mittnik, SUNY at Stony Brook
FRIDAY, APRIL 22, 1988
8:00 a.m. - 10:00 a.m.
Computer-Communication Networks, Chaired by: Martin Fischer, Defense Communication

Engineering Center

“Introduction to packet switching networks,” Jeffrey Mayersohn, BBN Communication
Corporation

“Electronic mail - a valuable augmentation tool for scientists,” Elizabeth Feinler,
SRI International

“Networks to support science,” Stephen Wolff, National Science Foundation
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8:00 a.m. - 10:00 a.m.

Supercomputing, Design of Experiments and Bayesian Analysis, Part I, Chaired by:
Jerry Sacks, University of Illinois

“Acceleration methods for Monte Carlo integration by Bayesian inference,” John Geweke,
Duke University

“Software for Bayesian analysis: current status and additional needs,” Prem K. Goel,
Ohio State University

“Some numerical and graphical stategies for implementing Bayesian methods,”
Adrian Smith, University of Nottingham

8:00 a.m. - 10:00 a.m.
Numerical Methods for Statistics, Chaired by: Stephen Nash, George Mason University

“Interior point methods for linear programming,” Paul Boggs, National Bureau of Standards

“Block iterative methods for parallel optimization,” Stephen Nash and Ariela Sofer, George
Mason University

“New methods for B-differentiable functions: theory and applications,” Jong-Shi Pang,
The Johns Hopkins University

8:00 a.m. - 10:00 a.m.

Contributed Papers: Probability and Stochastic Processes, Chaired by: Yash Mittal,
National Science Foundation

“Moving window detection for 0-1 Markov trials,” Joseph Glaz, University of Connecticut,
Philip C. Hormel, CIBA-GEIGY Corporation and Bruce McK. Johnson, University of
Connecticut

“Maximum queue size and hashing with lazy deletion,” Claire M. Mathieu, Laboratoire
d’Informatique de I’Ecole Normale Superieure and Teffrey S. Vitter, Brown University

“On the probability integrals of the multivariate normal,” Dror Rom and Sanat Sarkar,
Temple University

“Computational aspects of harmonic signal detection,” Keh-Shin Lii and Tai-Houn Tsou,
University of California, Riverside

“Maximum likelihood estimation of discrete control processes: theory and application,”
John Rust, University of Wisconsin
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8:00 a.m. - 10:00 a.m.
Contributed Papers: Statistical Methods II, Chaired by: CIiff Sutton, George Mason
University

“Computing extended maximum likelihood estimates in generalized linear models,”
Douglas B. Clarkson, IMSL, Inc. and Robert 1. Jennrich, University of California, Los
Angeles

“Assessment of prediction procedures in multiple regression analysis,” Victor Kipnis,
University of Southern Florida

“Estimation of the variance matrix for maximum likelihood parameters by quasi-Newton
methods,” Linda Pickle, National Cancer Institute and Garth P. McCormick, George
Washington University

“Variable selection in multivariate multiresponse permutation procedures,” Eric P. Smith,
Virginia Tech

“The effect of small covariate-criterion correlations on analysis of covariance,”
Michael J. Rovine, A. von Eye and P. Wood, Pennsylvania State University

8:00 a.m. - 10:00 a.m.
Contributed Papers: Nonparametric and Robust Techniques, Chaired by: Paul Speckman,
University of Missouri

“Robustness of weighted estimators of location: a small sample survey,” Greg Campbell
and Richard I. Shrager, NIH

“A comparison of Spearman’s footrule and rank correlation coefficient with exact tables and
approximations,” LeRoy A. Franklin, Indiana State University

“Approximations of the Wilcoxon test in small samples with lots of ties,”
Arthur R. Silverberg, Food and Druy Administration

“Simulated power comparisons of MRPP rank tests and some standard score tests,”
Derrick S. Tracy and Khushnood A. Khan, University of Windsor

10:15 a.m. - 12:15 p.m.
Special Invited Lecture II, Chaired by: Mervin Muller, Ohio State University

“Some modern quality improvement techniques and their computing implications,”
George E. P. Box, University of Wisconsin

Special invited discussion, Gerald J. Hahn, GE CRD and Gregory B. Hudak, Scientific
Computing Associates
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10:15 a.m. - 12:15 p.m.
Supercomputing, Design of Experiments and Bayesian Analysis, Part II, Chaired by:
Prem K. Goel, Ohio State University

“Supercomputer-aided design,” Jerry Sacks, University of Illinois

“A Bayesian approach to the design and analysis of computer experiments,” Toby Mitchell,
Oak Ridge National Lab

10:15 a.m. - 12:15 p.m.
Neural Networks, Chaired by: Muhammed Habib, University of North Carolina

“Statistical learning networks: a unifying view,” Andrew R. Barron, University of Illinois
and Roger L. Barron, Barron Associates, Inc.

“Stochastic models of neuronal behavior,” Gopinath Kallianpur, University of North
Carolina

“Inference for stochastic models for neural networks,” Muhammed Habib, University of
North Carolina and A. Thavaneswaran, Temple University

10:15 a.m. - 12:15 p.m.
Contributed Papers: Applications II, Chaired by: Brian Woodruff, Air Force Office of
Scientific Research

“Space Balls! or estimating diameter distributions of polystyrene microspheres,”
Susannah Schiller and Charles Hagwood, National Bureau of Standards

“Comparing sample reuse methods at FHA - an empirical approach,” Thomas N. Herzog,
U. S. Department of Housing and Urban Development

“Maximum entropy and its application to linguistic diversity,” R. K. Jain, Memorial
University of Newfoundland

“Encoding and processing of Chinese language - a statistical structural approach,”
Chaiho C. Wang, George Washington University

“The elimination of quantization bias using dither,” Martin J. Garbo and
Douglas M. Dreher, Hughes Aircraft Company

10:15 a.m. - 12:15 p.m.
Contributed Papers: Image Processing 11, Chaired by: Refik Soyer, George Washington

University

“Maximum entropy and the nearly black image,” lain Johnstone, Stanford University and
David Donoho, University of California, Berkeley

“A probabilistic approach to range image description,” Arun Sood, George Mason University
and E. Al-Hujazi, Wayne State University

xxix
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“An empirical Bayes decision rule of two-class pattern recognition for one-dimensional
parametric distributions,” Tze Fen Li, Rutgers University

“Statistical modeling of a priori information for image processing problems.” Z. Liang, Duke
University Medical Center

“Advanced statistical computations improve image processing applications, Bobby Saffari,
Generex Corporation

10:15 a.m. - 12:15 p.m.
Contributed Papers: Simulation I, Chaired by: Bill DuMouchel, BBN

“On compars tive accuracy of multivariate nonnormal random number generators,”
Lynne K. Edwards, University of Minnesota

“Bayesian analysis using Monte Carlo integration: an effective methodology for handling
some difficult problems in statistical analysis,” Leland Stewart, Lockheed Research

Laboratory

“A squeeze method for generating exponential power variates,” Dean M. Young, Baylor
University

“Mixture experiments and fractional factorials used to tailor large-scale computer
simulation,” T.K. Gardenier, TKG Consultants, Ltd.

“Simulating stationary Gaussian ARMA time series,” Terry J. Woodfield, SAS Institute,
Inc.

2:00 p.m. - 4:00 p.m.
Tales of the Unexpected: Successful Interdisciplinary Research, Chaired by: Sallie McNulty,
Kansas State University

“Some statistical problems in meteorology,” Grace Wahba, University of Wisconsin

“Modeling parallelism, an interdisciplinary approach,” Elizabeth Unger, Kansas State
University

“Mice, rain forests and finches: experiences collaborating with biologists,” Douglas Nychka,
North Carolina State University

Discussion: Jerome Sacks, University of Illinois

XXX
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2:00 p.m. - 4:00 p.m.
Density Estimation and Smoothing, Chaired by: David Scott, Rice University

“XploRe: computing environment for exploratory regression and density estimation
methods,” Wolfgang Hardle, University of Bonn

“Curve estimation with applications to mapping and risk decomposition,” Michael Tarter,
University of California, Berkeley

“Interactive multivariate density estimation in the S package,” David Scott, Rice
University

2:00 p.m. - 4:00 p.m.
Object Oriented Programming, Chaired by: Werner Stuetzle, University of Washington

“Object oriented programming: a tutorial,” Wayne Oldford, University of Waterloo

“An object oriented toolkit for plotting and interface construction,” Robert Young,
Schlumburger, Palo Alto Research Center

“An outline of Arizona,” John MacDonald, University of Washington

2:00 p.m. - 4:00 p.m.
Contributed Papers: Numerical Methods, Chaired by: Ariela Sofer, George Mason
University

“A theorgy of quadrature in applied probability: a fast algorithmic approach,” Allen Don,
Long Island University

“Higher order functions in numerical programming,” David Gladstein, ICAD

“A numerical comparison of EM and quasi-Newton type algorithms for finding MLE’s for a
mixture of normal distributions,” Richard J. Hathaway, John W. Davenport and Margaret
Anne Pierce, Georgia Southern College

“Numerical algorithms for exact calculations of early stopping probabilities in one-sample
clinical trials with censored exponential responses,” Brenda MacGibbon, Concordia
University, Susan Groshen, University of Southern California and Jean-Guy Levreault,
University of Montreal

“An application of quasi-Newton methods in parametric empirical Bayes calculations,”
David Scott, Concordia University
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2:00 p.m. - 4:00 p.m.
Contributed Papers: Bayesian Methods, Chaired by: William F. Eddy, Carnegie-Mellon

University

“Approaches for empirical Bayes confidence intervals with application to exponential scale
parameters,” Alan E. Gelfand and Bradley P. Carlin, University of Connecticut

“A data analysis and Bayesian framework for errors-in-variables,” John H. Herbert,
Department of Energy

“Bayesian diagnostics for almost any model,” Robert E. Weiss, University of Minnesota

“An iterative Bayes method for classifying multivariate observations,” Duane E. Wolting,
Acrojet Tech Systems Company

“A Bayesian model of information conbination from noisy sensors,” G. Anandalingam,
University of Pennsylvania

2:00 p.m. - 4:00 p.m.
Contributed Papers: Expert Systems in Statistics: Chaired by Khalid Abouri, George
Washington University

“Inside a statistical expert system: implementation of the ESTES expert system,”
Paula Hietala, University of Tampere, Finland

“Knowledge-based project management: work effort estimation,” Vijay Kanabar,
University of Winnipeg

“Combining knowledge acquisition and classical statistical techniques in the development of
a veterinary medical expert system,” Mary McLeish, University of Guelph

“The effect of measurement error in a machine learning system,” David L. Rumpf and
Mieczyslaw M. Kokar, Northeastern University

“An expert system for prescribing statistical tests of non-parametric and simple parametric
designs,” Gary Tubb, University of South Florida

XXXii




SATURDAY, APRIL 23, 1988
8:30 a..m. - 10:30 a.m.

Computational Aspects of Simulated Annealing, Chaired by: Mark E. Johnson, Los Alamos
National Lab

“Computational experience with simulated annealing,” Daniel G. Brooks and
William A. Verdini, Arizona State University

“Simulated annealing in optimal design construction,” Ruth K. Meyer, St. Cloud State
University and Christopher J. Nachtsheim, University of Minnesota

“A simulated annealing approach to mapping DNA,” Larry Goldstein and
Michael J. Waterman, University of Southern California

8:30 a.m. - 10:30 a.m.
Dynamical High Interaction Graphics, Chaired by: Paul Tukey, Bellcore

“Determining properties of minimal spanning trees by local sampling,” Allen McIntosh,
Bellcore and William Eddy, Carnegie-Mellon University

“Data animation,” Rick Becker, AT&T Bell Labs and Paul Tukey, Bellcore

“Dimensionality constraints on projection and section views of higher dimensional loci,”
George Furnas, Bellcore

8:30a.m. - 10:30 a.m
Contributed Papers: Statistical Methods III, Chaired by: Thomas Mazzuchi,
George Washington University

“Simultaneous confidence intervals in the general linear model,” Jason C. Hsu,
Ohio State University

“Empirical likelihood ratio confidence regions,” Art Owen, Stanford University

“An approximate confidence interval for the optimal number of mammography x-ray units
in the Dallas-Fort Worth metropolitan area,” Roger W. Peck, University of Rhode Island

“Optimizing linear functions of random variables having a joint multinomial or multivariate
normal distribution,” Josephina P. de los Reyes, University of Akron

“On covariances of marginally adjusted data,” James S. Weber, Roosevelt University

8:30 a.m. - 10:30 a.m.
Contributed Papers: Simulation II, Chaired by : Robert Jernigan, American University

“SIMDAT and SIMEST: differences and convergences,” James R. Thompson, Rice
University

“Simulation and stochastic modeling for the spatial allocation of multi-categorical
resources,” Richard S. Segall, University of Lowell
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“Robustness study of some random variate generators,” Lih-Yuan Deng, Memphis State
University

“Testing multiprocessing random number generators,” Mark J. Durst, Lawrence Livermore
National Laboratory

“An approach for generations of two variable sets with a specified correlation and first and
second sample moments,” Mark Eakin and Henry D. Crockett, University of Texas at
Arlington

8:30 a.m. - 10:30 a.m.
Contributed Papers: Biostatistics Applications, Chaired by: Nancy Flournoy, National
Science Foundation

“An algorithm to identify changes in hormone patterns,” Morton B. Brown, Fred J. Karsch
and Benoit Malpaux, University of Michigan

“Applying microcomputer techniques to multiple cause of death data: from magnetic tape
to artificial intelligence,” Giles Crane, New Jersey State Department of Health

“Spline estimation of death density using census and vital statistics data,” John J. Hsieh,
University of Toronto

“Optimum experimental design for sequential clinical trials,” Richard Simon, National
Cancer Institute

“Bayes estimation of cerebral metabolic rate of glucose in stroke patients,” P. David Wilson,
University of South Florida, S. C. Huang and R. A. Hawkins, UCLA School of Medicine

8:30 a.m. - 10:30 a.m.
Contributed Papers: Discrete Mathematical Methods, Chaired by: Donald Gantz, George

Mason University

“Minimum cost path planning in the random traversability space,” A. Meystel, Drexel
University

“Algorithms to reconstruct a convex set from sample points,” Marc Moore, Ecole
Polytechnique Montreal and McGill University, Y. Lemay, Bell Canada, and
S. Archambault, Ecole Polytechnique Montreal

“On the geometric probability of discrete lines and circular arcs approximating arbitrary
object boundaries,” Chang Y. Choo, Worchester Polytechnic Institute

“Application of orthogonalization procedures to fitting tree-structured models,”
Cynthia O. Siu, The Johns Hopkins University

“Evaluation of functions over lattices,” Michael Conlon, University of Florida
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10:45 a.m. - 12:00 noon
Special Invited Lecture III, Chaired by: Sally Howe, National Bureau of Standards

“Visualizing high dimensional spaces,” Thomas Banchoff, Brown University

10:45 a.m. - 12:45 p.m.
Entropy Methods, Chaired by: Raoul LePage, Michigan State University

“Introduction to relative entropy metho..s,” John Shore, Entropic Processing Corporation

“Structural covariance matrices and 2-dimensional spectra,” John Burg, Entropic Processing
Corporation

“Matrix completion and determinants,” Charlie Johnson, College of William and Mary
10:45 a.m. - 12:45 p.m.

Contributed Papers: Information Systems, Databases and Statistics, Chaired by:

Robert Teitel, Teitel Data Services

“Information systems and statistics,” Nancy Flournoy, National Science Foundation

“Is there a need for a statistical knowledge base?” Z. Chen, Louisiana State University

“An alternate methodology for subject database planning,” Craig W. Slinkman, Henry D.
Crockett, and Mark Eakin, University of Texas at Arlington

“A sensitivity analysis of the Herfindal-Hirschman Index,” James R. Knaub, Jr.,
U. S. Department of Energy

”Statistical methods for document retrieval and browsing,” Jan Pedersen, Xerox PARC and
John Tukey and P. K. Halvorsen

10:45 a.m. - 12:45 p.m.

Contributed Papers: Parallel Computing, Chaired by: Joseph Brandenburg, INTEL
Scientific Computers

“Programming the BBN butterfly parallel processor,” Pierre duPont, BBN Advanced
Computers

“A tool to generate parallel FORTRAN code for the Intel iPSC/2
hypercube,” Carlos Gonzalez, J. Chen and J. Sarma, George Mason University

“All-subsets regression on a hypercube multiprocessor,” Peter Wollan, Michigan
Technological University

“Multiply twisted N-cubes for multiprocessor parallel computers,” T.H. Shiau, University of
Missouri, Columbia

“Markov chains arising in collective computation networks with additive noise,”
R.H. Baran, Naval Surface Warfare Center
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10:45 a.m. - 12:45 p.m.
Contributed Papers: Density and Function Estimation, Chaired by: Celesta Ball, George
Mason University

“The L, asymptotically optimal kernel estimate,” Luc Devroye, McGill University

“Derivative estimation by polynomial-trigonometric regression,” Paul Speckman, University
of Missouri, Columbia and R.L. Eubank, Southern Methodist University

“A pooled error density estimate for the bootstrap,” Walter Liggett, National Bureau of
Standards

“Efficient algorithms for smoothing spline estimation of functions with or without
discontinuities,” Jyh-Jen Horng Shiau, University of Missouri, Columbia

“On the convergence of variable bandwidth kernel estimators of a density function,”
Ting Yang, University of Cincinnati

10:45 a.m. - 12:45 p.m.
Contributed Papers: Statistical Methods IV, Chaired by: LeRoy A. Franklin,
Indiana State University
“Stochastic test statistics,” P. Warwick Millar, University of California, Berkeley

“It’s time to stop!,” Hubert Liiliefors, George Washington University

“The effects of heavy tailed distributions on the two sided k-sample Smirnov test,”
Henry D. Crockett and M. M. Whiteside, University of Texas at Arlington

“Performance of several one sample procedures,” David Turner, Utah State University

“Exact power calculation for the chi-square test of two proportions,” Carl E. Pierchala,
Food and Drug Administration
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Computer Intensive Statistical Inference

Bradley Efron
Depariment of Statistics
Stanford Universily

Abstract: We discuss three recent data
analyses which illustrate making statistical
inferences (finding significance levels, confidence
intervals and standard errors) with the critical
assistance of the computer. The first example
concerns a permutation test for a linear model
situation with several covariates. We provide a
computer-based compromise between complete
randomization and optimum design, partially
answering the question “how much randomization
is enough?” A problem in particle physics provides
the second example. We use the bootstrap to find
a good estimator for an interesting decay
probability and then to obtain a believable
confidence interval. The third problem involves a
long-running cancer trial in which the z-value in
favor of the more rigorous treatment wandered
extensively during the course of the experiment. A
dubious theory, which suggests that the wandering
is just due to random noise, is rendered more
believable by a bootstrap analysis. All three
examples illustrate the tendancy for computer-
based inference to raise new points in statistical
theory. [ Editors note: Professor Efron provided
this abstract together with the following examples

which were his handout to summarize his Keynote
Address.]

Mouse Data: Ordinary Permutation Test

* Two groups of mice, “A”=Treatment (7 mice)
and “B”=Control (9 mice).

* For each mouse, measured survival time in days
after surgery

A: 94 197 16 38 99 141 23 Mean= 86.9
B: 52 104 146 10 50 31 40 27 46 Mean=56.2
Difference=30.6

* 1000 random divisions of the 16 numbers into
groups of 7 and 9 gave 1000 corresponding values
of Difference = Mean A — Mean B. {In other
words we permute labels “A” and “B.”}

* Of these 126 excceded Difference = 30.6, for an
attained significance level (asl) = .126.

1000 permss B®mouse data

o n
|
J B
; r",.f“!‘ —h_
? i
o ’mﬂﬂ
| |:1fi;!:!‘
| 4‘ alit
! NN h
=l
Lt 1 K
o .NHH[’MMQ;&,__
w0 -0 ° 0 1o
Diff"
The 14 Scoliosis Patients
Usual Linear Model
y= Tg + X a -+ €
14x1 14x1 14x6 6x1 14x1

where ¢ is distributed as n(0, ¢?I). Usual ANOVA
test for Hy: #=0 rejects H, for large values of

Ly L Lo L
S=T'y/(!Tlyl)

1
where T and % are projections orthogonal to L(X)
(equivalent to t-test for 8 = 0).
Data was actually generated from
y = age + .667xT + ¢

where ¢ =-0.16 0.31 2.22 -1.49 -0.66 3.71 2.49
-0.87 -1.37 2.57 -3.47 0.09 -5.23 1.95.




The 14 Scoliosis Patients

r X )

PATIENT Y T age ht vt sax health constant
1. 14 .64 1 14.33 175.25 54.35 1 3 1
2 15.65 1 14.67 169.45 53.67 2 o 1
3. 19.47 1 16.58 179.35 59.25 1 1 1
4.]) 11.59 -1 13.7% 169.85 50.95 1 2 1
. 12.25 -1 13.58 154.75 M.28 1 2 1
6. 18.55 1 14.17 173.05. 46.45 1 1 1
7. 20.33 1 17.17 177.35 54.25 1 3 1
8. 12.08 -1 14.42 173.65 59.57 1 o 1
9. 10.54 -1 12.58 165.05 39.27 2 [} 1
[10. 17.87 -1 15.67 192.25 64.25 2 1 1
ﬁl. 16.03 -1 20.17 183.75 62.7S 2 2 1
(12. 18.75 -1 19.33 187.95 S6.51 3 1 1
[13. 9.19 1 13.75 16%.05 42.78 1 2 1
(14. 17.37 1 14.75 177.15 54.138 2 2 1

DATA MATRIX

* Gave S = 0.557. Reject Hy?
+ Usual t-test gave asl = P{ t,>1.77 } = .060.

+ Compare S with values of S* obtained by
permuting T to T* (i.e., permuting -1s and 18).

* Choose 400 T* vectors randomly from (1,;1) =
3432 possibilities.

L
* Would like T* to be uniformly distributed in
€1
2(X).
* For vy, v, ..., vg an orthonormal basis for
1
L(X),

- L.
looked at projections of T* vectors along each v ;
counted # projections in deciles of “perfectly

uniform” distribution.

counts for 400 Tvecs actuallv used

decile Vi Y2 Y Ve s Ve Y9 e A \P) vJ Ve Vs Y v, Y
1 33 38 43 g; 2 S1 45 4] 47 40 32 j: 41 3¢ 49 )
2 37 39 S1 66 40 36 313 39 4S 36 19 61 40 49 38 N
) 31 4% 38 ST 40 40 &) 46 43 S2 4% %7 S2 44 237 DS
4 38 49 )7 29 46 46 6 43 27 36 4% 31 41 18 32 &4
b] 39 45 34 12 40 25 46 45 37 37 37 1% 34 38 41 48
6 ¢S 36 3% 11 4% 33 36 0O ¢ 31 40 11 I 43 N S5
7 47 27 45 28 43 )9 45 42 34 42 35 31 38 S0 45 132
[ ] €2 I8 44 67 34 43 171 36 37 4% S1 49 35 35 40 49
) J4 40 36 67 1 46 e 38 44 43 e 56 41 e 3

10 s4 43 33 32 35 41 45 W8 42 38 I8 4% 40 31 &) &2




o gt . “top 40° ™ values
* Projection along v, very non-uniform, so choose P pe

another 400 T* vectors. 0

+« Not much better, but these are the ones I
decided to use.

!'

| i
i

T

.- - 'L. L f
Each T gives S* = T* ¥/ (| T*| | ¥| ) with y ‘
—

fixed as shown. Of the 400 S* values, 25.5

exceeded S = 0.557 giving asl = 25.5/400 = .064. 1 i
1 Coob T
*+ Ideal T vector would have 7(T) = | T|2 = 14, I o l
that is, T L £(X) ; | O
|y
A
+ Var{ B | T } = ¢?/7(T) in usual model. { | '
° |
* If T chosen randomly from 400, mean {7(T)} = 20 <. 0.0 0.8 1.0
8.43. »
400 permutation values Maybe top 40 T* vectors all point in the same
ﬁ direction! No, their direction counts are reasonably
1
T uniform in £(X), except near v4. Here the cosines
80~ : 1 ' 4
Pl of angle d", v;):
| 1 { 1 2 3 4 5 6 71T 8
P 31.19 .01 -.02 .30 .26 -.56 .63
o _—] A1 L LY Y % (.
ot G © e e e e e oy o
o4 o] 3. 3 4 « 1 . . 3 3
i i 3. 3 4 3 13 3 4 6 4
| . 1 3 s o 3 3 & 1
J__I S. 3 3 4 L] 4 4 ¢ 7
IS s SIS S W SO SRS TN i .. ¢ s 1 o 3 3 2 )
-1.0 os 0.0 0.8 10 7. S 3 ¢ 1 3 . 1 s
» 8. ] 3 b () s 4 [ 4
L B ] S 4 [ ] 4 H] ? (-]
10, ? ¢ S o 4 1 3 L)
« I chose T randomly from “top 40,” i.e. those 40 The Tau Data
T vectors having greatest 7(T) values.
Mean {r(T)|Top 40} = 12.53. + Occurrence rates of five different tau decay
. events estimated, B1, B2, B3, B4, B5. (Also the
* Actually got T3, with 737,=12.28. “estimated” SD for each.
+ 1.5 of the 40 S* values for the “top 40” reference + Should have D = B1—(B2+B3+B4+B5) = 0.
set exceeded S=0.557, asl = .038.
_ « In fact, D = 18.25 (or 16.90).
permutation asl, all 400 = .064 {=25/400}
permutation asl, top 40 = '038.{:1'5/40} + Wanted: a central 98% confidence interval for D.
NOTE: Binomial SD for asl is .041
anova asl = .060 {=Prob [t; > 1.77] } + Normal theory: D € (15.41, 21.09).




All T events + Tried different trimmed means: 0, .1, .2, .25, .3,
5.

tll

~

evt

* For each trim, evaluated bootstrap SD estimate.

A
* “3” gives lowest SD estimate for D, but “.25”
easier to explain.

* Choose “.25” for remainder of analysis.

+ Bootstrap SD estimates based on 200 bootstrap

A A A
replications for each Bl, B2, ..., B5.

Bl ESTIMATES (1) LABS)
(.3 (.4 (.5 (6

] . 2) } 1 (.7 (.8 (.9 [.10)
EST 84 860 852 85.3 851 878 84.7 86.7 86.9 96.1
SO 2 2.2 1.7 1.9 31 41 1.9 07 04 110
(.11 (.12) (.13}
ST 7.9 8.2 .7
SO 1.3 09 1.0
B2 ESTDWIES (6 LABS)
.1) (.2) (.3 (.4 (.51 (.6])
EST 4 0.5 221 2123 123 226
9 41 2.5 1.5 21 1.8
B3 ESTIMATES (7 LABS)
.1} (.3) .3 (.4 (.5} (.6 (.7)
1271 90 80 11.7 %93 11.8 10.7 10.0
o 38 35 18 2.1 1.3 O9 1.8
B4 ESTDWTES (14 LASS)
€. 1) .2 (.3 (.4 (.91 (.6 (.71 (.8 7 (.10)
ST 18.9 122.4 160 18.2 19 17.6 18.3 20.4 130 18.2
so 30 S$5 13 31 $ 13 31 33 3s o.
(.11) (.12) (.13) (.14)
274 17.¢ 17.0 1.4 19.1
) 0.9 11 1.6 1.4
BS ESTDWTES (20 LABS)
-1 (.2 .3 (.4 (.5 (.6 (.7 (.8 (. 9 (.10
£sT 0.3 17.8 22 13.4 18 1 12 1.2 s 1718
) 30 4.0 10 S8 3 . 7 I 1« 2.7
((12) (.13) (.33] (.14) (.1S] (.16] (.17] (.18) [.19] (.20)
st 17.1 176 129 194 180 17.7 17.&4 188 37.7 18.3
) 1.3 33 18 233 1.3 09 10 11 1.4 1.
POINT ESTIMATES OF B1.32.53.54.2S AND D=B1- (B2+83+B4+RS)
D n n » M s
veighted mean: 10.28 .73 12.31 10.78 17.68 17.70
25gtrimmed mean: 16.90 6S.88 22.32 10.23 18.2¢ 18.18




WWtriz of bootstrep sds

we O OB & & & &
e O
1 118 o:i g:: g;: ::: g::
] 108 04 04 06 037 034
Poidisskiniseh
s 1.11 0.66 01371 o :§ gf:; 8 ;:
theo 122 27 e © a
small big small
25%
44 trimmed
observe ata
B [— j mean
F, 4¢ (B1,,81,,...,81 ;) = Bl
A iid ~ s ~a A Repeat
F) == (Bl},Bl,,...,Bl ;) ~ Bl 200
J times
L-bootstrap data 25%
trimmed
mean
A* q A*
D 1r1 Bl
o ]
.
1l
e o
Hd [ [
A* -~
" _\ ps* |
L

Bs*

.
2>
*
—

3 —]

A A A A 2 A A 2%
+ Then SD(D) = [ SD(B1)?+ --- +SD(B5)?.

* Here are histograms of Ii\l‘, e B5* and also of

A, A A A
D*=B1* — (B1*+ --- + B5*). 500 boostraps each.

+ Percentiles of D* were 14.20 (.01) and 19.34
(.99).

* Approximate confidence intervals for D:

.01 .99
BC 14.29 19.53
BCa 14.25 19.49
Boot-T 14.73 18.99
Boot-T 14.22 19.20
(smooth)
Normal 15.41 21.09
Theory

Bootstrap T

A

* Let T = D:D, where & is the jackknife estimate
4

of SD(D).
* Use bootstrap to estimate T('m)’ 799
A A
* 2000 bootstraps of T*= D—A_TD gave estimated
o

percentiles




A

ALOD _ 9 63 and T¢* = 2.73 with

(D—5x2.73, D+5x2.63] = [14.73, 18.99]
“Boot-T”

+ Smoothed bootstrap: Draw from
'§1=£‘1®N(0,af), etc. Gave T0°V= -2.97 and
9= 331 0

(D—8x3.31, D+5x2.97) = [14.22, 19.20]

“Boot-T smooth”

Reference: Efron, B. and Tibshirani, R. (1986).
“Bootstrap methods for standard errors, confidence
intervals and other measures of statistical
accuracy,” Statistical Science, 1, 54-77.

Boot-T for taudats

0 1
-
X0 ~—
1
0 — H
1004 =
°-r
- -2 ) 2 .

Cancer Treatment Data

NMXCTh%1 SEPARATED AND CRDERED

sesecstnsegroup Atseetecsssenes

lll...i..l.',u Peessncasessine

Y 4 = ot ind

4 4 = ent ind
1 ? 0.960 1131.188 a4
3 b ] 0.961 1795.380 4“4
3 42 0.941 209%.754 4
4 6 0.922 861.352 16
s [ 23 0.902 1210.064 37
¢ 74 0.902 1117.750 E 1)
? [ 0.002 1529.876 »
8 84 0.8062 849.814 1s
L ] 7 0.842 472.564 ]
10] 108 0.8022 972.566 12
12{ 129 0.782 1812.818 42
13{ 133 0.762 1681.066 »
14| 133 0.742 880.252 1?7
18] 139 0.722 1431.568 kL
16 140 0.702 ¢90.6% 10
17| 140 0.681 968.366 20
18] 146 0.661 714.068 11
19| 149 0.641 1390.692 38
) =316 )
231 187 .601 671.620
12| 160 581 9.818 2
23] 160 361 797.37¢ 13
24| 163 .541 1719.%0¢ 41
%1 173 .521 2106.192 %

1

27 1
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1040 . 880
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* Randomized clinical . trial for head and neck + “r” = proportion of total experience (3 y for all
cancer patients at that date compared to ¥ y on June 30,

1985).
* Data as of June 30, 1985. * Question: Was treatment B relatively more

. . . ”
+ 51 patients in “A,” radiation. effective early in the experiment?

46 patients in “B,” radiation plus chemotherapy. .
* patients i =5, raciation p ¢ Py Some dubious theory: Let “z;” be the z-value

when the proportion r of the total data is

* y = time to relapse (days). available (so z, = final z-value). Then

observed
censored (3) E{z}/E{z,} =t
+ km = Kaplan-Meier survival curve.

*d={6ﬁm@m

(b) zr ~ N(NT E{z,}, 1)
* Log-rank (Mantel-Haenszel) test for equality of .
survival was z = 2.29 for an attained level of (c) 2 |2z < NNT E{z;},1 ~ 1)

ignifi 1-9(2.29) = .011.
signiticance ( ) (d) z, la.nd Zr, are approximately bivariate normal

. 3
' eed with corr = ,lr—; .

Kaplan-Meier estimated
survival curves for

the two treatments 200 M bootetrap z-values, 6/30/82 r = .494

M fkne(:) \ ’_1
0 213 ‘ . %0 < [_‘ j

Ve :
kmA(t/ ——
o 00+ r . . 20 4

T
L1 ] 70 (X

4
P
p

°o
L3
~
°
-
o
-
o
-
©

TiNE 1% wONTHS

10 1 B

= s-value of log-rank test at various calendar
times. —

— —~+— T T y T -

-2 -1 9 1 K 3 4 [}

+ z =231 0on 6/30/81. Experiment nearly halted.

Z-values from NCOG7h6}

Bootstrap investigation of :-value on June 30, 1982: r = .

2.8
. * Consider as fixed the 72 entry dates (38 for A,
2.0 ﬁ_/\ /’// 34 for B) occurring before June 30, 1982.
/
1.8 | 7 + For entry date e; compute ¢, = # of days from
Ve . [ s
\’ %5 Sig e; until June 30, 1982.
1.0 +
o.s / * Let Y], Y3, ..., Y3g be i.id. draws from km,,
the final Kaplan-Meier curve as of June 30, 1985.
0.0 -
+ For each Y}, let y; = min ( Y{, ¢; ) and d] =1
-0.8 [ or0asy; =Y; orc,.
-1.0 1 1 . N s .
171779 80 '81 '82 ‘83 '84 ‘85
r s 10% 25% 40% 60% 78% 96%




* Likewise draw Y3, Y3, ..., Y3, from kmy, the
final Kaplan-Meier curve as of June 30, 1985.

* Then compute zf, the log-rank z-value for the
bootstrap data.

* 200 z's ~ N(1.56, 1.04%), VT E{z,} = 1.61

* Compare with N(1.61, 1) from (b) !

* Did correspomding z}s for r = .246 (January 1,
1981)?

* Corr (zp, 7, ) = .721.

* Compare with (d), corr = \j-::; = .706.

* Jagged line: 2, versus r.
* Smooth curves:

irz, +¢ ‘]l—r, c=.2,-1,0,1,2

* Middle curve is E { z; | z,}.

* Others show 1 and 2 conditional deviation
excursions.

* Nothing unusual happened! Maximum excursion
‘i8 less than 1.3 conditional standard deviations.

s~velue ot 1/1/81 ve 3-val at 8/30/82
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FITTING FUNCTIONS TO NOISY DATA
IN HIGH DIMENSIONS

Jerome H. Friedman*
Department of Statistics
Stanford Linear Accelerator Center
Stanford University

Abstract

Consider an arbitrary domain of interest in n-dimensional Euclidean space and an unknown
function of n arguments defined on that domain. Suppose we are given the value of the function
(perhaps perturbed with additive noise) at some set of points. The problem is to find a function
that provides a reasonable approximation to the unknown one over the domain of interest. This
paper presents a brief review of current methodology aimed at dealing with this problem, and
presents a new technique — multivariate adaptive regression splines - that has the potential to
overcome some of the limitations of previous approaches.

1.0. Introduction
Suppose a system under study can be described (over some domain D € R") by

y:f(:cl,---,:z:n)+e (1)

where y is a response or dependent variable of interest, z,,---,z, are a set of explanatory or inde-
pendent variables, and f is a (deterministic) single valued function of its n-dimensional argument.
The quantity € is an additive random or stochastic component that (if nonzero) reflects the fact
that y depends on quantities other than z, ..z, that are also varying. We are given a set of
values {yi,Z1i, **»Zni}Y, (Z1i,- -+, 2ni) € D, (training sample) and the purpose of the exercise
is to obtain a function f(zl, -++,x,) that provides a reasonable approximation to f(zy,---,z,).
Here reasonable usually means accurate since one often wants to use f to approximate f at other
points not part of the training sample. If in addition one wants to use f to try to understand the
properties of f (and thereby the system that provided the data) then the interpretability of the
representation of f is important. It is also sometimes important that f be rapidly computable. In
addition, for some applications it is important that f be a smooth function of its argument; that
is, at least its low order derivatives exist everywhere in D.

* Research supported in part by National Security Agency Grant MDA904-88-H-2029
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In low dimensional settings (n < 2) successful developments have occurred in two general
directions: piecewise polynomials and local averaging. The basic idea of piecewise polynomials is
to approximate f by several generally low order polynomials each defined over a different subregion
of the domain D. The approximation is required to be continuous, and sometimes have continuous
low order derivatives. The tradeoff between smoothness and flexibility of the approximation f is
controlled by the number of subregions (knots) and the order of the lowest derivative allowed to be
discontinuous at region boundaries. The most popular piecewise polynomial fitting procedures are
based on splines. [See deBoor (1978) for a general review of splines and Schumacker (1976), (1984)
for reviews of some two-dimensional extensions.)

Local averaging approximations take the form

N
fle) =) K(z,z:) (2)
=1
where K(z,z') (called the kernel function) usually has its maximum value at z' = z with its

absolute value decreasing as |z — 2’| increases. Thus, f(:t) is taken to be a weighted average of the
yi where the weights are larger for those observations that are close or local to z. For n > 1 the
kernel is usually taken to be a function of the Euclidean distance between the points

n 1/2
K(x,x) = K (Z 2 zzP) 3)
i=1

Local averaging procedures have received considerable attention in the statistical literature begin-
ning with their introduction by Parzen (1962). Stone (1977) has shown that this approach has de-
sirable asymptotic properties. They have also seen interest from the mathematical approximation
literature [Shepard (1964), Bozzini and Lenzrduzzi (1985)]. Roughness penalty methods [smooth-
ing (n = 1) and thin plate (n = 2) splines] are closely related to kernel methods based on Euclidean
distance [see Silverman (1985) and Schumaker (1976)).

The direct extension of piecewise polynomials (splines) or local averaging methods to higher
dimensions (n > 2) is straightforward in principle but difficult in practice. These difficulties are
related to the so-called “curse-of-dimensionality”, a phrase coined by Bellman (1961) to express
the fact that exponentially increasing numbers of points are needed to densely populate Euclidean
spaces of increasing dimension. In the case of spline approximations, extension to higher dimen-
sions is accomplished through tensor products of univariate spline functions. These functions are
associated with a grid of points defined by the outer product of knot positions on each independent
variable. For a given number of knots K on each variable, the size of the grid, and thus the number
of approximating basis functions, grows as K™. For example, in six dimensions a (tensor product)
cubic spline with only one interior knot in each variable has 15,625 coefficients to be estimated.
That number in ten dimensions is approximately 107. Even though only one interior knot per vari-
able might be considered a very coarse grid, it still requires a very large number of data points to
estimate the corresponding spline approximation. Finer grids require many more points.

Local averaging methods suffer a similar fate as the dimension of the function argument space
increases. For example, let D be the unit hypercube in R™ and consider a uniform kernel with
hypercubical support and bandwidth (edge length) covering 10 percent of the range of each co-
ordinate. Then, if the data are roughly uniformly distributed in R™, the kernel will (on average)
contain only (0.1)" of the sample, thereby nearly always being empty for moderate to large n. If,
on the other hand, one adjusts the size of the neighborhood (bandwidth) to contain 10 percent of




the sample, it will cover (on average) (0.1)}/™ x 100 percent of the range of each variable, resulting
in a very crude approximation.

This problem of the inherent sparsity of practical sampling in high dimensions basically limits
the straightforward application of both piecewise polynomials and local averaging methods in these
settings. It does not, however, limit theoretical investigation. It is straightforward to imagine
arbitrarily densely sampling of high dimensional spaces. Asymptotic theoretical calculations can
then be done. [See Stone (1977) for pioneering work in this area.] The (practical) difficulty lies
only in obtaining the corresponding large samples required for accurate approximations. It should
be noted in addition, that local averaging approximations (and to a lesser extent tensor product
splines) are slow to compute and difficult to interpret.

The curse-of-dimensionality is fundamental and cannot be directly overcome. If the true un-
derlying function f(z1,---,z,) (1) exhibits strong variation of no special structure on all of the
variables in every part of the domain D, then accurate approximation with feasible sample sizes
is not possible. Fortunately, very few functions of interest exhibit behavior quite this dramatic.
Generally there is some (sometimes known, more often unknown) special structure associated with
the function that can be exploited by a sufficiently clever algorithm to reduce the complexity and
thereby achieve more accurate approximation.

Function approximation in high dimensional settings has been pursued mainly in statistics.
The principal approach taken there has been to fit an especially simple parametric form to the
training sample. The most common parameterization is the linear function

fx1, m0) = a0 + ) aizy. (4)
=1

This is not likely to produce a very accurate approximation to very many functions in R™, but
it has the virtue of requiring relatively few data points, it is easy to interpret, and it is rapidly
computable. Also, if the stochastic component ¢ (1) is large compared to f, then the variability of
the estimate dominates, and the systematic error associated with this simple approximation is not
the most serious problem.

Recently, the linear model has been generalized nonparametrically to the so-called additive
model

flar,-za) =Y filai) (5)
=1

[Friedman and Stuetzle (1981), Breiman and Friedman (1985), Hastie and Tibshirani (1986), Fried-
man and Silverman (1987)]. Here the {fi(z;)}] are each (different) smooth but otherwise arbitrary
functions of a single variable. Although additive models are still not able to accurately approxi-
mate very general functions in R™, they do constitute a much richer class than the simple linear
approximation (4). They share the high interpretability of the linear model (one can view the uni-
variate functions f;) and they are not overly difficult to compute.

Linear and additive approximations lack generality in that they have limited ability to adapt
to a wide variety of multivariate functions f. Also, as the sample size increases there is a limit
to the accuracy of the approximation (unless the true underlying function happens to be exactly
linear or additive over D).

Strategies that attempt to approximate general functions in high dimensionality are based on
adaptive computation. An adaptive computation is one that dynamically adjusts its strategy to
take into account the behavior of the particular problem to be solved, e.g. the behavior of the
function to be approximated. Adaptive algorit®ms have been in long use in numerical quadrature
[see Lyness (1970); Friedman and Wright (1987).] In statistics, adaptive algorithms for function




approximation have been developed based on two paradigms, recursive partitioning [Morgan and
Sonquist (1963), Breiman, Friedman, Olshen, and Stone (1984)], and projection pursuit [Friedman
and Stuetzle (1981), Friedman, Grosse, and Stuetzle (1983), Friedman, (1985)].

Projection pursuit uses an approximation of the form

M n
f(.’l?],"‘,.’l?n): me <Zaimzi>s (6)
m=1 =1

that is, additive functions of linear combinations of the variables. The univariate functions, f,,
are required to be smooth but are otherwise arbitrary. These functions, and the corresponding co-
efficients of the linear combinations appearing in their arguments, are jointly optimized to produce
a good fit to the data based on some distance (between functions) criterion - usually squared-error
loss. It can be shown [see Diaconis and Shahshahani (1984)] that any smooth function of n variables
can be represented by (6) for large enough M. The effectiveness of the approach lies in the fact that
even for small to moderate M, many classes of functions can be closely fit by approximations of this
form[see Donoho and Johnstone (1985).] Another advantage of projection pursuit approximations
is affine equivariance. That is, the solution is invariant under any nonsingular affine transformation
(rotation and scaling) of the original explanatory variables. It is the only general method suggested
for practical use that seems to possess this property. Projection pursuit solutions have some inter-
prative value (for small M) in that one can inspect the functions f,, and the corresponding linear
combination vectors. Evaluation of the resulting approximation is computationally fast. Disadvan-
tages of the projection pursuit approach are that there exist some simple functions that require
large M for good approximation [see Huber (1985)], it is difficult to separate the additive from the
interaction effects associated with the variable dependencies, interpretation is difficult for large M,
and the approximation is computationally time consuming to construct.
Recursive partitioning approximations take the form

M
f@ry-2a) = Y fmlzr,e o z)[(21, 1 2n) € Run. (7)

m=1

Here I(-) is 0/1 valued function that indicates the truth of its argument :¢nd {R,,}M are disjoint
subregions representing a partition of D. The functions f,, are generally taken to be of quite simple
parametric form. The most common is a constant function

fm(zls"'sxn)z‘lm (8)

[Morgan and Sunquist (1963) and Breiman, et al. (1984)]. Linear functions (4) have also been
proposed [Breiman and Meisel (1976) and Friedman (1979)], but they have not seen much use. The
partitioning is developed in a recursive manner. At each step, M, all existing subregions { R, } M
are optimally split into two subregions along one of the variables. The particular split that yields
the best improvement in the fit is taken to define two new regions and the parent region (that was
split) is deleted. (The starting region is the entire domain D.) The number of subregions in the
partition is thereby increased by one at each step. A backwards stepwise strategy for determining
the final number of regions is detailed in Breiman, et al. (1984).

The recursive partitioning approach has the potential to provide acceptable approximations
in high dimensionalities provided the under'ying function has low “local” dimensionality. That is,
even though the function f (1) may strongly depend on all of the variables, in any local region of
the domain the dependence is strong on only a few of them. These few variables may be different




in different regions. Another assumption inherent in the recursive partitioning strategy is that
interaction effects have marginal consequences. That is, a local intrinsic dependence on several
variables, when best approximated by an additive function, does not lead to a constant model.
This is nearly always the case.

Recursive partitioning using piecewise constant avproximations (8) are fairly interpretable
owing to the fact that they are very simple and can be .epresented by a binary tree. [See Breiman
et al. (1984)]. They are also fairly rapid to construct and especially rapid to evaluate.

Although recursive partitioning is the most adaptive of the methods for multivariate function
approximation it suffers from some fairly severe restrictions that limit its effectiveness. Foremost
among these is that the approximating function is discontinuous at the subregion boundaries. This
is more than a cosmetic problem. It severely limits the accuracy of the approximation, especially
when the true underlying function is continuous. Even imposing continuity only of the function
(as opposed to derivatives of low order) is usually enough to dramatically increase approximation
accurocy.

Another problem with recursive partitioning is that certain types of simple functions are diffi-
cult to approximate. These include linear functions with more than a few nonzero coefficients {with
the piecewise constant approximation (8)] and additive functions (5) in more than a few variables
(piecewise constant or piecewise linear approximation). In addition, one cannot discern from the
representation of the model whether the approximating function is close to a simple one, such as
linear or additive, or whether it invol-es complex interactions among the variables.

2.0. Multivariate Adaptive Regression Splines.

This section describes a new method of adaptive computation for approximating functions in
high dimensionalities. Although it is an extension of the additive modeling (5) procedure devel-
oped by Friedman and Silverman (1987), it appears closest in spirit to the adaptive nature of the
recursive pastitioning approach. Unlike recursive partitioning, however, it produces strictly con-
tinuous approximations (with continuous derivatives if desired), it easily approximates linear and
additive functions, and it can be represented in a form that permits separate identification of the
additive and (multiple) interaction effects associated with the variables that enter into the 1nodel.

The approximation takes the form of an expansion in multivariate spline basis functions,

M

fz120) = ) amB(z1,- -+, 25) (9a)
m:o
with
BO(zl7 . "'Tn) = lv (gb)
K
Bn(zy, - 2,) = Hb(xu(k.m)ltkm)v m 2> 1. (96)
k=1

The {an }} are the coefficients of the expansion. Each multivariate spline basis function B, m > 0,
is a product of univariate spline basis functions b, each of a single variable z,(x m), characterized
by a knot at lxm. The subscripts v(k,m) label the explanatory variables, thereby taking values
in the range 1 < v(k,m) < n; K,, takes values in the same range 1 < K,, < n and determines
the number of factors (univariate spline basis functions) comprising the corresponding B,,. The
multivariate spline basis functions B,, are adaptive in that the number of factors K,,, the variable
set V(m) = {v(k, m)}{("‘ and the knot set {tkm},K"‘ are all determined by the data.

The approximation is developed in a forward/backwards stepwise recursive manner in analogy

with the recursive partitioning approach. Given {B,,,}(',"_l the AMth term takes the form

Ba(z1,- -1 30) = Be(y,- - 22)b(z0]1) (10)




with 0 < € < M — 1. That is, the next term Bjps is taken to be the product of a univariate
spline basis function with one of the previously defined multivariate spline basis functions B,
(0 < ¢ < M -1). The values for v, t, and £ are chosen so as to jointly maximize the goodness-
of-fit of the resulting approximation (see Section 2.2). The defining variable z, for the new basis
function b(z,|t) is restricted to be one that does not appear in the selected B, so that the same
variable does not appear more than once in any B,, (0 < m < M). The resulting optimal values
v*, t*, and £* are then used to form the new multivariate spline basis function

Kn

B = [] b(xuginn ltenr)
k=1

with Kpr = K- + 1, v(Kp, M) = v*, tg, M = t*, and the rest of the factors taken from By-.

One of the requirements for this strategy to be computationally feasible is that each univariate
basis function be defined by the location of a single knot tx,,. We therefore use the truncated power
basis representation for the (univariate) splines

b (zt) = (z 1)} (11)

where ¢ is the order of the spline which controls the degree-of-continuity of the approximation.
The subscript denotes the non-negative part. (This basis is known to produce numerical problems,
especially for ¢ > 1, so a great deal of care must be taken in the implementation.)

This forward stepwise construction of the multivariate spline basis (9) (10) is continued until
M = M;,,x terms have been entered into the approximation. This process yields a sequence of
Mmax models, each with one more term than the previous one in the sequence. Each model in
the sequence has an associated badness-of-fit score (see Section 2.2). That model with the lowest
badness-of-fit score is then subjected to a backwards stepwise deletion strategy [see Friedman and
Silverman (1987), Section 2.1], to obtain the final model. The upper limit Myax should be taken to
be large enough so that the minimizing model is not too close to the end of the sequence. Due to
the forward stepwise nature of the procedure it is possible for the badness-of-fit to locally increase
a bit as the sequence proceeds, and then start to decrease again.

If one makes the restriction K,, = 1 (9c¢) for all m (that is, always setting £ = 0 rather than
including it in the optimization) the approximation becomes a sum of functions, each of a single
variable. This is, of course, an additive model (5) and this strategy reduces to the smoothing and
additive modeling technique introduced by Friedman and Silverman (1987). The key ingredient
that advances this approach to general settings is the ability to fit (possibly complex) interactions
among the variables through the product terms that are permitted to enter the approximation (9),
if required by the fit.

Although originally motivated by the work of Friedman and Silverman (1987) this approxima-
tion strategy (9)-(11) has more in common with the recursive partitioning approach (see Section
1.0) to function approximation (7). There is a correspondence between the terms in (9) and the
regions in (7). Choosing a previous term for multiplication (10) is analogous to choosing a (pre-
vious) region to split in (7). The optimization over v and t in (10) is quite similar to finding the
optimal splitting variable and split point for partitioning a region.

The correspondence between this basic approach and recursive partitioning is most easily seen
by contrasting the piecewise constant approximation (8) of the latter with the use of ¢ = 0 splines
(11) in the former

b (z|ty = I(x —1). (12)

Both methods then produce piecewise-constant approximationsin this case, and multiplying (some-
times with constraints) is strictly equivalent to splitting. The two methods, even though being most




similar in this setting, do not however produce equivalent approximations. This is basically because
unlike recursive partitioning, the subregions induced by (9), (10), (12) are not constrained to be
disjoint. At any stage during recursive partitioning, only terminal regions are eligible for splitting,
i.e. only those regions defined by the intersections of previous splits (terminal nodes on the current
binary tree). With the MARS strategy all previously defined regions — not just terminal ones — are
eligible for splitting at any stage of the model building process. The previously defined regions are
those represented by the internal nodes of the tree and are unions of subsets of current terminal
regions.

The strategy associated with the MARS approach has several important advantages. Foremost
among them is that it allows close approximations to many of the common functions that present
difficulty to recursive partitioning (e.g. nearly linear or additive functions). Another advantage is its
interpretability through its ANOVA representation (see below). The most important advantage of
this approach, however, is that by choosing ¢ > 0 (11) continuous approximations can be achieved.
This has been one of the most serious limitations of recursive partitioning. Choosing a value for
¢ > 1 causes the approximation to be continuous and to possess continuous derivatives to order
qg-—1.

As with recursive partitioning, this method attempts to use to advantage the fact that inter-
action effects involving several variables will give rise to non-constant dependencies on at least one
of those variables individually. This is because in the forward part of the model] building strategy,
additive terms and lower order interactions must enter before the corresponding higher order in-
teractions. These lower order terms provide information as to where to place knots to capture the
corresponding higher order ones, and they may in fact be removed (through the backwards deletion
process) after the higher order interaction terms are entered.

2.1. ANOVA Decomposition.

The representation of the approximation given by (9), (10), (11) resulting from construction

of the model

M Km
fz1-z0) = a0+ Y am [] (@ ugesm) — tem)% (13)
m=1 k=1

does not provide much insight into the nature of the approximation. By simply rearranging the
terms, however, it is able to provide considerable insight into the predictive relationship between y
and zy, -+, Zn,

f(z1,,20) = ag + Z fi(z:) + Z fij(zi ;)
Kpn=2

Kn=1

+ ) firlminziae) e

K.,=3

(14a)

Here the first sum is over all terms involving only a single variable and represents the purely additive
component of the model. Each additive function f;(z;) can be computed by collecting together all
single variable terms involving z;,

fizi)= ) amBm(zi). (14b)

Here V(m) represents the variable set {v(k, m)}]K"‘ associated with the mth term. The second sum
in (14a) is over all terms involving exactly two variables and represents the pure first order (two
variable) interaction part of the model with

fij(zi,z;) = Z am B (2, 2;). (14c¢)
CIEV (m)




Similarly, the third sum represents second order (three variable) interactions with

fise(ziyzj,28) = Z amBn(zi,zj,2k), (14d)
GRSV (m)

and so on. The additive terms can be viewed by plotting fi(z;) against z; as one does with additive
modeling. The two variable interaction terms f;;(z;,z;) can be plotted using either contour or
perspective mesh plots. Higher order interactions (if present) are of course more difficult to view.
The corresponding (multivariate) knot locations can, however, provide some insight. We refer to
(14) as the ANOVA decomposition or representation of the MARS model because of its similarity
to decompositions provided by the analysis of variance of contingency tables.

The ANOVA representation identifies the particular variables that enter into the model,
whether they enter purely additively or are involved in interactions with other variables, the order
of the interactions, and the other variables that participate in them.

2.2. Model Selection.

As in Friedman and Silverman (1987) we use the generalized cross-validation criterion (Craven

and Wahba, 1979)

N 2
1 : 2 [, COM)
GOVM) = 3 Do~ u(eri sl (- <) (150)
for model selection where M is the number of terms in (9a) and
C(M)=(d+1)M +1. (15b)

Minimization of this criterion is used to select the knot variable and its location at each forward
step, the terms to delete in the backwards steps, and the size of the final model. The use of (15b)
results in a change of (d + 1) “degrees-of-freedom” for each term in the model, one for fitting
the least-squares coefficient a,,, and d for the optimization associated with the knot placement.
Friedman and Silverman (1987) used d = 2. This was inotivated somewhat on theoretical grounds
but mostly on an empirical basis. This value is too small for generalized MARS modeling since we
are, in addition, optimizing over the term index 0 < £ < M — 1 at each step as well as the knot
location. This produces increased variance that must be accounted for in the model selection. A
direct approach would be to estimate an optimal d value for the problem at hand through a sample
reuse technique such as the 632 bootstrap (Efron, 1983) or cross-validation Store (1974).

Another approach is to study the variance directly through a modified bootstrapping technique
(Hastie and Tibshirani, 1985). Each bootstrap replication consists of replacing each response value
by a standard normal deviate. By construction the true underlying function f is the constant zero,
and the mean-squared-prediction error is completely dominated by the variance

E(f - fmM)? = Efly = Var fu

or equivalently ) X
E(y— fu)’ = Efgy + L. (16)

Since the GCV score (15a) is intended to be an estimate for (16) one can obtain an estimate for
C(M) through

aMY|T

E(ASR]\[)/ [1 - _(}V_—) = L'f)%[ +1
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or

Efi +1

Here the average-squared-residual, AS Rz, is the numerator in (15a). The expected values in (17)
are estimated through repeated bootstrap replications.

A wide variety of simulation studies (not detailed here) using this approach indicate the fol-
lowing.
(1) C(M) is a monotonically increasing function with decreasing slope as M increases.
(2) Using the linear approximation (15b), with d = 2.5, is fairly effective, if somewhat crude.
(3) The “best” value for d depends (weakly) on M, N, and the distribution of the covariate vectors.
(4) Over a wide variety of situations, the best value of d lies in the range 2.0 < d < 3.0.
(5) The actual accuracy of the approximation, in terms of integrated squared error

/2
SOMY = N [ _ (M)‘ ] an.

ISE = / [£(x) - F)PdF(x),

depends very little on the value chosen for d in the range 2.0 < d < 3.0.
(6) The estimated accuracy

E[ISE - GCV(M™*)]?,

with M* being the minimizer of (15), does show a moderate dependence on the choice of d.
The consequence of (5) and (6) is that, although how well one is doing with this approach is fairly
independent of d, how well one thinks he is doing (based on the optimizing GCV score) does
depend somewhat on the values chosen for d. Therefore, a sample reuse technique should be used
to estimate the predictive capability of the final model, if it needs to be known fairly precisely.
2.3. Degree-of-Continuity.

Another important choice is the degree of continuity to be imposed on the approximating
function, i.e. the value for ¢ in (11). This choice affects the accuracy of the approximation, and
the speed and numerical stability of the computation. Friedman and Silverman (1987) used ¢ = 1
in conjunction with the knot placement and model selection strategy. This produces a continuous
piecewise linear approximation with discontinuous derivatives. Advantages of this approach are
much more rapid and numerically stable computation compared to higher values of ¢g. Also, it can
provide more accurate approximations in some situations. The main disadvantage is discontinuous
first derivatives.

Friedman and Silverman (1987) provide for derivative smoothing by replacing the basis func-
tions b(1)(z|t) (11) by closely related ones with continuous first derivatives:

0 r<t.
Clz|t_,t,ty) = {p(:l: —t )l 4+r(z-t.) t_<z <ty (18a)
T -1 I'Zt+

with t_ <t <t;. Setting
p=(2ty +1- —3)/(ty — )"
r= (2t -ty —t)/(ty —t-)°
causes these basis functions to be continuous and have continuous first derivatives. This approx-
imation has discontinuous second derivatives at the side knot locations, t_ and t,. The central

knot ¢, is placed at the corresponding knot location of b(1)(z|t). The two side knots, t_ and t,, are
placed at the midpoints between adjacent central knots on the same variable thereby minimizing

(18b)
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the number of second derivative discontinuities. The (central) knots are placed using the b(})(z|t)
(11) basis, taking advantage of the corresponding speed and numerical stability. The approxima-
tion with continuous derivatives is accomplished through using the corresponding piecewise cubic
basis (18).

The analogue to this approach in the more general setting of MARS modeling is to perform
derivative smoothing in the ANOVA representation (14). Each distinct ANOVA function (14b),
(14c), (14d), etc. is smoothed separately. The side knots are placed at the midpoints between
the central knot locations as projected onto each variable defining the particular function. For
the additive ANOVA functions (14b) this of course reduces to the Friedman and Silverman (1987)
strategy. Replacing each b(1)(z|t) (11) by its corresponding C(z|t_,t,t4) (18) in the MARS model
(13) (14) results in a continuous approximation with everywhere continuous derivatives.

2.4. Knot Optimization.

A natural strategy would be to make each distinct observation abscissa value on each predictor
variable a potential location for knot placement. Friedman and Silverman (1987) argue that a
more effective strategy is to restrict the number of candidate knot locations to very Lth (distinct)
observation abscissa value, with L given by

L(p,N) = —log, [- I%én(l - a)] /2.5 (19)

and 0.05 < a < 0.01. The considerations that lead to this result do not change when one considers
the more general MARS setting.
2.5. Computational Considerations.

In order for any method to be practical it must be computationally feasible. If implemented
in a straightforward manner the approximation strategy we propose would require prohibitive
computation. A full M + 1 parameter linear least squares fit for he coefficients {a,,}¥ must
be performed to evaluate the model selection criterion (15). This must be done at every potential
knot location on every variable for all M (previous) terms at each step M. The only way this can
be made to be computationally feasible is through updating formulae. That is, given the solution
fit at one potential knot location, the solution at the next one can be obtained through rapidly
computable simple updates of the previous solution. Friedman and Silverman (1987, Section 2.3)
derived updating formulae for the quantities that enter into the normal equations of the least squares
fit for the additive modeling case. Analogous updating formulae can be derived for the more
general case of MARS modeling. Use of these updating formulae reduce the computation from
being proportional to M*pN2/L to M3pN/L. As a point of reference, the computation for the
three examples (Section 3) each required about two minutes on a SUN Microsystems model 3/260.

3.0. Examples.

This section provides four illustrations of MARS modeling. The data are simulated so that
the results can be compared with the known (generated) truth. The first and fourth examples are
purely contrived, whereas the middle two are taken form electrical engineering. In all examples
the smoothing parameter d (15b) was taken to be d = 2.5. (The software automatically reduces
it to dg = 0.8d = 2.0 for additive modeling.) The minimum number of observations between knot
locations was determined by (19). In all examples the explanatory variables were standardized to
aid in numerical stability. (The MARS procedure is, except for numerics, invariant to the predictor
variable scales.) The response variable was also standardized so that the GCV score would be an
estimate for the fraction of unaccounted for variance (e* = 1 — R?).

3.1. Simple Function of Ten Variables.

22




For this example, N = 100 covariate vectors were uniformly generated in a n = 10 dimensional
unit hypercube. Associated with each such covariate vector is a response value generated as

yi = 0.02e¥71¥3%2 4 55in(wz3;/2)
+324i + 225 + 0 - 26i + 027, + 0 - zs; (20)
+0-29;+0-210,; +€, 1<1¢<100,

with the ¢; generated from a standard normal distribution. The ratio of standard deviations of the
signal to the noise is 3.08 so that the true underlying function accounts for 91% of the variance of
y-

The underlying function (20) consists of an interaction in the first two variables, an additive
nonlinear dependence in the third, and linear dependencies in the fourth and fifth. The last five,
T¢ — 10, aTe pure noise variables independent of the response.

Table 1 displays the results of applying the MARS procedure to these data. Table 1a shows
the history of the forward stepwise knot placement. The second column gives the GCV score (15)
at each iteration M (first column). The third column shows the effective number of parameters in
the fit C(M) (15b). The fourth and fifth columns give the optimizing knot variable v* and location
t*, while the last column points to the optimizing previous term (multivariate spline basis function)
£* that multiplies the new univariate spline function. This term may in fact point to previous terms
for its definition. The value £* = 0 indicates that the previous multiplying term is By (9b) so that a
new purely additive term is being included in the model. The particular factors comprising the Mth
multivariate spline basis function are identified by starting with the Mth row, then preceeding to
its parent, then to its parent’s parent and so on, until reaching a parent value of £* = 0.

Table 1a shows that the first knot was placed on z;. The second knot was placed on z,
multiplying the first term. At this point (M = 2) the model consists of an additive contribution
on z; and an interaction between z; and z;. The next three iterations include purely additive
contributions form z3, z4, and zs. The next iteration (M = 6) includes an additive term in z,.
This is multiplied by a factor involving z;, on the subsequent iteration (M = 7), resulting in two
bivariate splines characierizing the interaction between z, and z,. Up to this point the GCV score
has been monotonically decreasing.

The eighth iteration places into the model a term involving an interaction between variables zg,
z,, and z;. Note, however, that the GCV score has increased slightly. As more terms are added,
the GCV score continues to increase until the present maximum number of terms My = 17, is
reached.

Table 1b shows the result of the backwards stepwise term deletion strategy. The first column
gives the term number, m, the second its least squares coefficient, a,, (9a), followed by the knot
variable, location, and parent as in Table la. A zero coefficient value, a,, = 0, means that the
term has been deleted. Note that in addition to the deletion of all terms beyond M = 7, the
purely additive contributions of variables z, and z3 (first and sixth terms) have also been deleted.
This leaves only the two terms (second and seventh) involving pure interactions between these two
variables.

Table 1¢ summarizes the ANOVA decomposition of the final model. There are four ANOVA
functions. The first three are additive functions on variables z3, 4, and z5 respectively. The fourth
ANOVA function is bivariate and represents a (pure) interaction between 1 and x,. Table 1c also
gives the GC'V score for the fit with the corresponding piecewise cubic basis (18). It is seen to be
essentially the same as for the piecewise linear basis given in Table 1b.

The second column in Table 1c gives the standard deviation of the corresponding ANOVA
function. This gives one indication of its (relative) importance to the model and is interpreted in a
manner similar to a (standardized) regression coefficient in a linear model. The third column gives
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gev

0.8460
0.5781
0.3914
0.2885
0.2347
0.1911
0.1599
0.1603
0.1621
0.1696
0.1802
0.1829
0.1936
0.2062
0.2271
0.2519
0.2837

Table 1a
History of the MARS forward stepwise knot placement strategy
for Example 3.1.

# efprms

4.5

8.0
11.5
15.0
18.5
22.0
25.5
29.0
32.5
36.0
39.5
43.0
46.5
50.0
53.5
57.0
60.5

variable  knot parent
1 0.5257 0.
2 -0.6736 1.
3 -1.626 0.
4 -1.170 0.
5 -1.601 0.
2 -1.177 0.
1 -1.164 6.
9. -1.128 2.
3. -0.9315 0.
4 1.015 1.
3 1.013 0.
6 -0.2161 11.
4 -1.675 5.
4 0.2366e-01 11.
9 1.583 3.
9 -0.2349 5.
2 -0.4146 5.
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Table 1b
The result of the backwards stepwise term deletion strategy
for Example 3.1.
gev = 0.1404 #efprms = 18.5

term  coeff.  variable  knot parent
1 0. 1. 0.5257 0.
2 0.8746 2. -0.6736 1
3 0.4525 3. -1.626 0
4 0.3171 4. -1.170 0
5 0.2232 5. -1.601 0
6 0. 2. -1.177 0.
7 0.2373 1. -1.164 6.
8 0. 9. -1.128 2
9 0. 3. -0.9315 0
10 0. 4. 1.015 1
11 0. 3. 1.013 0.
12 0. 6. -0.2161 11.
Table 1c

ANOVA decomposition summary of the MARS model for Example 3.1

fun. std. dev. -gcv # terms # efprms variable(s)

1 0.4518  0.4109 1 3.5 3
2 0.2983  0.2520 1 3.5 4
3 0.2229  0.1974 1 3.5 5
4 0.7772  0.8867 2 7.0 1 2

piecewise cubic fit on 5 terms, gcv = 0.1457
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Figure 1b: Enlargement of the fourth frame of Figure la; interaction contribution of (zy, z3)
to the MARS model for Example 3.1.
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Figure lc: Graphical ANOVA decompositon of the MARS model for Example 3.1, with 200

observations.
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another indication of the importance of the corresponding ANOVA function, by providing the GCV
score for the model with all of the terms corresponding to that particular ANOVA function deleted.
This can be used to judge whether this ANOVA function is making an important contribution
to the model, or whether it just slightly improves the global GCV score. In this example all four
ANOVA functions appear to be important with the third one, involving z5, being the weakest.

Figure 1a provides a pictorial representation of the ANOVA decomposition by plotting the
respective (piecewise-cubic) ANOVA functions. The first three frames plot the respective additive
functions involving z3, x4, and z5. The fourth frame provides a perspective mesh plot of the
bivariate ANOVA function involving z; and z,. Figure 1b is an enlargement of the fourth frame
of Figure 1la.

These figures show very nearly linear dependencies on z3, r4, and z5, and a strong nonlinear
interaction between z, and ;. It is important to note that Figure 1b does not represent a smooth of
the response y on variables z; and z;, but rather it shows the contribution of z; and z, to a smooth

of y on variables z;,---,219. The accuracy of the resulting approximation is fairly remarkable
considering the high dimensionality, n = 10, and the small sample size, N = 100. Note also that
the prucedure (correctly) did not enter zg,- -, z;9 into the model.

The only shortcoming of the MARS model based on these data is that it did not capture the
nonlinearity in the additive contribution of z; (20). Figure 1c shows the pictorial representation
of the ANOVA decomposition corresponding to Figure la when the sample size is increased to
N = 200. The model looks very similar to that for the smaller (N = 100) sample size (Figure 1a)
except that it now gives a better approximation to the contribution of z5.

Tables la - 1c and Figures 1a — 1b illustrate the application of the MARS procedure to
a single data set (replication) from the particular setting under study (20). They do not give
information on the average performance of the procedure when applied to this situation. Table 1d
displays the results of a simulation study that addresses this issue. Each row summarizes the results
of 100 replications of the following procedure. A sample of N ten-dimensional covariate vectors
were randomly sampled from a uniform distribution in {0,1]'®. A sample of N random standard
normal deviates were then generated and the corresponding response values (20) were assigned to
the covariate vectors. The MARS procedure was then applied. A new data set of 5000 observations
was then generated and used to estimate the normalized integrated squared error

ISE = [15x)— fOOFds Varef(x), (21a)
and the normalized predictive squared error

PSE = (ISE - Var, f(x) + 1)/(Vary f(x) + 1) (21b)

(fraction of unaccounted for variance) for the piecewise cubic MARS model.

The second column of Table 1d gives the optimizing GCV score averaged over the 100 repli-
cations, whereas the third and fourth columns give the corresponding average PSE and ISE (21)
respectively. The quantities in parentheses are the associated standard deviations over the 100
replications. (The standard deviations of the averages are one tenth these values.)

Table 1d shows results for three sample sizes (N = 50, 100,200) and for three sets of constraints
applied to the MARS model. These constraints involve the maximum number of factors mi that
are permitted to enter a single multivariate spline basis function. This controls the maximum
interaction order permitted in the model. Setting mi = 1 restricts the model to be additive in
the predictor variables, whereas mi = 2 limits the model to interactions involving at most two
variables, and so on. The value mi = n results in no restriction. Limiting the interaction level of
the MARS model can improve accuracy (reduce variance) if the true underlying function f is close
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Table 1d
Summary of 100 replications of Example 3.1, piecewise cubic fit.

mi GCV PSE IS
N =50
46 (.12) .45 (.097) .40 (.11)
2 28 (.13) .28 (.18) .22 (.20)
10 27 (11) .30 (.19) .24 (.21)
N =100
1 36 (.072) .36 (.064) .30 (.070)
2 15 (.043) .14 (.026) .059 (.029)
10 15 (.047) .16 (.041) .077 (.044)
N = 200:
1 32 (.037)  .31(.022) .25 (.023)
2 12(.029) .12 (.015) .033 (.015)
10 12 (.029)  .12(.024) .041 (.025)
Table 2a

ANOVA decomposition summary of the MARS model
on alternating current series circuit impedence, Z.
gcv = 0.2311 #efprms = 46.5

fun, std. dev. -gev # terms # efprms variable(s)

1 0.5096  0.6392 1 3.5 1
2 1.833 0.6854 3 10.5 2
3 1.417 0.6431 3 10.5 4
4 0.4195 0.4401 1 3.5 2
5 2.034 0.5704 4 14.0 2
6 0.1702  0.2577 1 3.5 3

piecewise cubic fit on 13 terms, gev =0.2447
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to an f that involves at most low order interactions. If not, such a limitation will introduce some
bias in exchange for the corresponding variancc reduction. In terms of interpretability there is a
strong advantage to models with mi = 2, owing to their graphical representation by means of the
ANOVA decomposition.

In terms of ISE (21a) the accuracy of the MARS model for this problem is seen to increase
rapidly as the sample size increases from 50 to 200. The additive model (mi = 1) is seen to be
distinctly inferior to those involving interactions (m: = 2, 10) especially as the sample size increases.
The optimizing GCV score is seen very slightly to overestimate the true PSE on average.

The true underlying function (20) in this case happens to involve at most interactions in two
variables. Thus, setting m¢ = 2 results here in no increase in bias. Owing to the decrease in
variance, the JSE is seen to be somewhat better than for the unrestricted MARS model (m: = 10).
The size of the effect is seen, however, to be fairly small (< 25% in squared error loss) so that a
large penalty is not incurred by fitting the full nonparametric model.

3.2. Alternating Current Series Circuit.

Figure 2a shows a schematic diagram of a simple alternating current series circuit involving a

resistor R, inductor L, and capacitor C. Also in the circuit is a generator that places a voltage

Ve = V,sinwt (21a)

across the terminals @ and b. Here w is the angular frequency which is related to the cyclic frequency
f by
w =2rf. (21b)

The electric current I, that flows through the circuit is also sinusoidal with the same frequency,
Iy = (V,/Z)sin(wt — ¢). (21¢)

Its amplitude is governed by the impedance Z of the circuit and there is a phase shift ¢, both
depending on the components in the circuit:

Z = Z(R,w,L,C),
¢ = ¢(R,w,L,C).

From elementary physics one knows that

Z(R,w,L,C) = [R* + (wL — 1/wC)})'/?, (22a)
¢(R,w,L,C) = tan~! [LL—RI—/—“—)S] (22b)

The purpose of this exercise is to see to what extent the MARS procedure can approximate these
functions and perhaps yield some insight into the variable relationships, in the range

z1: 0 < R <100 ohms

Ty: 20 € f <280 hertz

z3: 0 < L <1 henries

z4: 1 < C <11 micro farads.

(23)

Two hundred four-dimensional uniform covariate vectors were generated in the ranges (23). For
each one, two responses were generated by adding normal noise to (22a) and (22b). The variance
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Figure 2a: Schematic diagram of the alternating current series circuit of Example 3.2.
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of the noise was chosen to give a 3 to 1 signal to noise ratio for both Z (22a) and ¢ (22b), thereby
causing the true underlying function to account for 90% of the variance in both cases.
3.2.1. Impedance, Z.

Applying the MARS procedure to the in:pedance data with mi = 1 (additive model) gave an
optimizing GCV score of 0.558. The GCV scores for mi = 2 and 4 were respectively 0.231 and
0.229. The additive model is seen (not surprisingly) to be inadequate. Perhaps more surprising is
the fact that even though the true uiderlying function (22a) contains interactions to all orders, an
approximation involving only two-variable interactions is seen to give nearly as good a fit to these
data. Owing to its increased interpretability we show the results of the mi = 2 model.

Table 2a shows the ANOVA decomposition in the same format as Table 1c. There is a purely
additive contribution from z,(R), additive contributions from z,(w) and z4(C), and interactions
amongst z3, z3(L), and z,. Of the six ANOVA functions, all but the last one (involving an
interaction between the capacitance C and the inductance L) seem important to the model. Figure
2b displays a graphical representation of the ANOVA decomposition. The first frame plots the
(additive) contribution from the resistance R. The next three frames display the contributions of
the remaining variables that participate in interactions. These perspective mesh plots show the
total (additive plus interaction) contributions of each such variable pair. For example, the frame
in the upper right corner plots the sum of the second and fourth ANOVA functions, whereas that
of the lower left plots the sum of the second, third, and fifth.

The plots have been rotated so as to provide the best perspective view. The indicated zero
marks the lowest value and the axis label marks the direction of higher values.

The dependence of the impedance Z on R (first frame) is estimated to be approximately linear.
For low frequencies w, Z is seen to be high and independent of L (upper right frame). For high w, Z
has a mild monotonically increasing dependence on L. For low L, Z monotonically decreases with
increasing w, whereas for high L values, the impedance is seen to achieve a minimum for moderate w
values. The lower left frame shows that Z is very small and roughly independent of w and C except
when they jointly have very small values, in which case the impedance increases dramatically. The
lower right frame of Figure 2b shows that the C, L joint contribution is nearly additive, consistent
with the weak contribution of the sixth ANOVA function (Table 2a) to the MARS model.

These interpretations are based on visual examination of the graphic representation of the
ANOVA decomposition of the MARS approximation, based on a sample of size N = 200. Since the
data in this case are generated from known truth one can examine the generating equation (22a)
to verify their general correctness.

Table 2b summarizes the results of a simulation study based on 100 replications of data ran-
domly drawn according to the above prescription (22a), (23), in the same format as Table 1d. The
MARS procedure applied to the smallest sample size, N = 100, is seen to provide a fairly poor
approximation on average in terms of /SE. The approximation accuracy improves substantially
with the larger samples, except for additive modeling (mi = 1). The approximation accuracy for
the constrained (mi = 2) models is (on average) nearly identical to the unconstrained (mi = 4)
ones. [t appears that the bias-variance trade-off is exactly off-setting in this case.

The average GC'V score is seen to underestimate the corresponding PSE. at the smallest sample
size. This is due to the sharp joint dependence of Z on w and C [see (22a) and Figure 2, third frame].
For small sample sizes most replications will fail to sample covariate vectors with very small joint
values for w and C’, thereby failing to capture the rapid variation of Z in that region. There is no
way that the GC'V score (based on the ASR) can detect rapid function variation where there is no
data. Note that sample reuse technigues such as cross-validation or bootstrapping have the same
problem. As the sample size increases enough data is sampled in this region and the GCV score
gives a more acciuraye estimate of the true PSFE (on average).

3.22. Phase Angle, ¢.
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Figure 2b: Graphical ANOVA decomposition for the alternating current series circuit
impedance, Z, Example 3.21.
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Table 2b
Summary of 100 replications of the alternating current series
circuit impedance, Z, piecewise cubic fit.

mi GCV PSE IS
N = 100:
1 65 (.12)  .71(.092) .68 (.10)
2 46 (.15) .52 (.19) .46 (.21)
4 45 (.15) .52 (.19) .47 (.21)
N = 200:
1 60 (.082) .62 (.050) .58 (.056)
2 27 (.064) .27 (.10) .20 (.11)
4 28 (.066) .28 (.091) .20 (.11)
N = 400:
1 57 (.049) .57 (.026) .52 (.029)
2 20 (.057) .18 (.050) .095 (.056)
4 20 (.035) .18 (.035) .092 (.038)
Table 3a

ANOVA decomposition of the MARS model
on the alternating current series circuit phase angle, ¢.

gecv = 0.2190 #efprms = 39.5

fun. std. dev. -gcv # terms # efprms variable(s)

1 0.6323  0.3257 1 3.5 2
2 0.7253  0.4180 2 7.0 4
3 0.9931 0.3041 1 3.5 1
4 0.6483 0.4015 2 7.0 2 3
5 0.1521 0.2254 1 3.5 2 4
6 0.7754 0.2662 2 7.0 1 4
7 0.2064 0.2248 1 3.5 1 3
8 0.3464 0.2458 1 3.5 1 2

piecewise cubic fit on 11 terms, gcv = 0.2393
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The MARS procedure applied to the phase angle data (22b) (23) with mi = 1,2, and 4 gave
optimizing GCV scores of 0.295, 0.219, and 0.203, respectively. Here the additive model, while
still being less accurate, is more competitive with those involving interactions. The two variable
interaction model again fits the data almost as well as the unconstrained model.

Table 3a summarizes the ANOVA decomposition for the mi = 2 MARS model. It involves
additive contributions from all but z3(L) and interactions among all variable pairs except C and L.
Two of the ANOVA functions (fifth and seventh) however are seen to make very weak contributions
to the final model. Figure 2c is a graphical representation of the ANOVA decomposition in the
same format as Figure 2b. The dependence of the phase angle ¢ on all of the variables is seen to be
more gentle and more nearly additive than the impedance Z (Figure 2b). The principal interaction
effect is to decrease the phase angle for simultaneously high values of the predictor variable pairs.

Table 3b gives the results of 100 replications of phase angle data generated according to (22b),
(23). At the smallest sample size (N = 100) the additive model produces fits that (on average) are
nearly as accurate as those involving interactions. For the larger samples the interaction models
are somewhat more accurate in terms of /SR. The average optimizing GCV score is seen to be
quite close to the true average PSE.

3.3. Additive Data.

In the preceding examples there were strong interaction effects and it was seen that allowing
such effects in the MARS model substantially improved approximation accuracy. This example,
taken from Friedman and Silverman (1987), examines what happens when the true underlying
function is exactly additive and interactions are allowed to enter the MARS model. One would
expect accuracy to deteriorate since allowing for interactions among the variables increases the
variance of f while, in this particular case, not decreasing the bias.

Table 4 summarizes (in the same format as Tables 1d, 2b, 3b) the results of 100 replications
of the following simulation experiment. N(= 50,100,200) 10-dimensional covariate vectors were
generated in the unit hypercube. A set of standard normal deviates ¢; were then generated and
response values were assigned according to

i = 0.1e*™ 4 4/[1 + o~20(=2:-1/2)]
+3z3; + 224; + 25, + 0-26i + 0 - z7;
+0-78i +0-29; + 0-T10,i + €.

Here the signal to noise ratio is 0.28 so that the true underlying function accounts for 92% of the
variance of the response.

The ratio of the average I S E values for the additive and m¢ = 2 interaction fits are seen (Table
4) to be about 0.67 at all sample sizes. The corresponding ratio for the m¢ = 10 unconstrained fit
is about 0.60. The corresponding square roots of the ratios are 0.81 and 0.77. Thus, the (average)
accuracy here is reduced by about 25% when the interactive models are fit to purely additive data.
This degradation is surprisingly small given the small sample sizes and the high dimensionality
(n = 10). Note that the average GCV scores for the interactive models are always slightly worse
than that for the corresponding additive fit, so that the interactive models are not (on average)
claiming to do better than the additive ones. This suggests a strategy of accepting the additive
model if those involving interactions fit no better in terms of the GCV score, especially owing to
the increased interpretability of the additive model.

4.0. Remarks.
This section covers various aspects (extensions, limitations, etc.) of the MARS procedure not
discussed in the previous sections.
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Figure 2c: Graphical ANOVA decomposition for the alternating current series circuit phase
angle, ¢, Example 3.22.

. '\\“ 8
UM\ A )
“‘\“.\“\\\\\\
O DA
Pttty
‘ /) (L ‘\\“\\
OXIN

37




Table 3b
Summary of 100 replications of the alternating current series
circuit phase angle, ¢, piecewise cubic fit.

mi GCV PSE IS
N =100:
1 36 (.057) .35 (.036) .27 (.040)
2 33 (.059) .32 (.047) .25 (.052)
4 32 (.059) .33 (.12) .26 (.14)
N = 200:
1 32 (.032) .31 (.016) .23 (.017)
25 (.033) .24 (.022) .15 (.025)
4 24 (.032) .24 (.022) .15 (.070)
N = 400:
1 30 (.020) .29 (.007) .21 (.008)
22 (.019) .20 (.011) .11 (.012)
4 21 (.019) .19 (.012) .10 (.013)
Table 4

Summary of 100 replications of applying MARS
to purely additive data, Example 3.3.

mi GCV PSFE IS
N =50
30 (.092) .25 (.053) .13 (.062)
2 34 (.077) .30 (.074) .19 (.085)
10 34 (077) .29 (.080) .19 (.092)
N =100:
1 22 (.035) .18 (.020) .053 (.024)
P 22 (.040) .21 (.035) .081 (.041)
10 24 (.041) .21 (.035) .088 (.042)
N = 200:
1 .17 (.022) .16 (.008) .024 (.009)
2 18 (.024) .17 (.014) .036 (.016)

10 19 (.025) .17 (.012) .040 (.015)
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4.1. Constraints.

The MARS procedure is nonparametric in that it attempts to model arbitrary functions. It is
often appropriate, however, to place constraints on the final model, dictated by knowledge of the
system under study, outside the specific data at hand. Such constraints will reduce the variance of
the model estimates, and if the outside knowledge is fairly accurate, not substantially increase the
bias. One type of constraint has already been discussed in Section 3, namely limiting the maximum
interaction order of the model. One might in addition (or instead) limit the specific variables
that can participate in interactions. If it is known a priori that certain variables are not likely
to interact with others, then restricting their contributions to be at most additive can improve
accuracy. If one further suspects that specific variables can only enter linearly, then placing such
a restriction can improve accuracy. The incremental charge d (15b) for knots placed under these
restrictions should be less than that for the unrestricted krot optimization. (The implementing
software charges 0.8 - df and 0.4 - df, respectively, for the additive and linear constraints where df
is the charge for unrestricted knot optimization.)

These constraints, as well as far more sophisticated ones, are easily incorporated in the MARS
strategy. Before each prospective knot is considered, the parameters of the corresponding potential
new multivariate spline basis function (v,¢,¢, and B,) (10) can be examined for consistency with
the constraints. If it is inconsistent, it can simply be marked ineligible for inclusion in the model.
4.2. Semiparametric Modeling.

Another kind of a priori knowledge that is sometimes available has to do with the nature of
the dependence of the response on some (or all) the predictor variables. The user may be able to
provide a function g(z;,---,2,) that is thought to capture some aspects of the true underlying
function f(z1,--+,z,). More generally, one may have a set of such functions {g;(z1,---,2.)}{,
each one of which might capture some aspect of the functional relationship. A semiparametric
model of the form

J

fap(zla"',zn) = chgj(xh'”’zn) + f(xl,---,zn), (24)

=1

where f(zl, +++,T,) takes the form of the MARS approximation (9), could then be fit to the data.
The coefficients ¢; in (24) are jointly fit along with the parameters of the MARS model. To the
extent that one or more of the g; successfully describe attributes of the true underlying function,
they will be included with relatively large (absolute) coefficients, and the accuracy of the resulting
(combined) model will be improved.

Semiparametric models of this type (24) are easily fit using the MARS strategy. One simply
includes {g;(z1,---,z,)}{ as J additional predictor variables (Zn415 > Tnts) and constrains their
contributions to be linear. One could also, of course, not place this constraint, thereby fitting more
complex semiparametric models than (24).

4.3. Collinearity.

Extreme collinearity of the predictor variables is a fundamental problem in the modeling of
observational data. Solely in term of predictive modeling it represents an advantage in that it
effectively reduces the dimensionality of the predictor variable space. This is provided that the
observed collinearity is a property of the population distribution and not an artifact of the sample
at hand. Collinearity presents, on the other hand, severe problems for interpreting the resulting
model.

This problem is even more serious for (interactive) MARS modeling than for additive or linear
modeling. Not only is it difficult to isolate the separate contributions of highly collinear predictor
variables to the functional dependence, it is difficult to separate additive and interactive contribu-

39




tions among them. A highly nonlinear dependence on one such variable can be well approximated
by a combination of functions of several of them, and/or by interactions among them.

In the context of MARS modeling one strategy to cope with this (added) problem is to fit a
sequence of models with increasing maximum interaction order (mi). One first fits an additive
model (mi = 1), then one that permits at most two variable interactions (mi = 2), and so on.
The models in this sequence can then be compared by means of their respective optimizing GCV
scores. The one with the lowest mi value that gives a (relatively) acceptable fit can then be chosen.
4.4. Robustness.

Since the MARS method as described here uses a model selection criterion based on squared
error loss it is not robust against outlying response values. Unlike linear regression, however, it
is not very sensitive to outliers in the predictor variable space, owing to the local nature of the
resulting fit; sample covariate vectors far from an evaluation point tend to have less rather than more
influence on the model estimate. Response outliers will tend to strongly effect model estimates only
close to their corresponding covariate values. They will also (slightly) increase the variance of model
estimates elsewhere by increasing the number of multivariate spline basis functions (required to
capture the apparent high curvature of the function near each outlier).

There is nothing fundamental about squared-error loss in the MARS approach. Any criterion
can be used to select the multivariate spline basis functions, and construct the final fit, by simply
replacing the internal linear least squares fitting routine by one that minimizes another loss criterion
(given the current set of multivariate spline basis functions). Using robust/resistant regression
methods would provide resistance to outliers.

The only advantage to squared-error loss in the MARS context is computational. It is difficult
to see how rapid updating formulae could be developed for other types of linear fitting. For those
with access to rich computing environments, this presents no problem. For others, a compromise
strategy can mitigate the robustness problem for isolated outliers. The multivariate spline basis
functions are selected using the standard MARS approach with least-squares fitting. Given this
basis, the expansion coefficients {a,,}}f (9) are then fit using a robust/resistant linear regression
method to form the final model. This reduces the influence of the response outliers on model
predictions close to their corresponding covariate vectors. It does not remove thc ‘small) increased
variance associated with the additional (now redundant) basis functions.

4.5. Logistic Regression.

Linear logistic regression (Cox, 1970) is often used when the response variable assumes only

two values. The model takes the form

log[p/(1 - p)] = Zﬂil'i
i=1

where p is the probability that y assumes its larger value. The coefficients {3;}] are estimated
by (numerically) maximizing the likelihood of the data. Recently, Hastie and Tibshirani (1986)
extended this approach to additive logistic regression

log[p/(1=p)] = D fi(z:).
1=1

The smooth covariate functions are estimated through their “local scoring” algorithm. The model
can be further generalized by

log[p/(1 - p)} = f(z1, -+, 2})

with f(x,,---,zp) taking the form of the MARS approximation (9). This is implemented in the
MARS algorithm by simply replacing the internal linear least-squares routine by one that does lin-
ear logistic regression (given the current set of multivariate spline basis functions). Unless rapid
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updating formulae can be derived this is likely to be quite computationally intensive. A compromise
strategy analogous to that described in Section 4.4, however, is likely to provide a good approxima-
tion; the multivariate spline basis functions are selected using the squared-error based loss criterion
and the coefficients {an, }} for the final model are fit using a linear logistic regression on this basis
set. Note that in this setting the least-squares criterion is more robust than the likelihood based
criterion.

4.6. Reflection Invariance.

The MARS prorcedure as described here is not necessarily invariant to reflections of the indi-
vidual predictor variables. Replacing z; by —z; can (slightly) change the MARS model. This is due
to the fact that the pure linear term, associated with the piecewise-linear basis on each variable, is
not automatically included in the model; but rather it is subjected to the same forward/backward
stepwise selection strategy as all other potential basis functions. This gives the procedure the abil-
ity to model certain types of dependencies with fewer basis functions than would otherwise be the
case. Also, certain kinds of interaction effects require less terms to model than others.

In order to get an idea of the size of this effect a further simulation study was performed on
the alternating current series circuit example (Section 3). Fifteen additional simulation studies
(N = 200, 100 replications each) were done analogous to those that led to Tables 2b and 3b.
For each of the (total) 16 studies, the predictor variables were each multiplied by one of the
16 combinations of (+1,+1,%1,41). The variance of the ISE over these 16 experiments was
compared to its average variance over the 100 replications of different training sample sets. For the
impedance, this ratio was 0.156 whereas for the phase angle it was 0.036. The higher value for the
impedance is due to the very sharp structure for very low joint values of w and C (Figure 2, lower
left frame). In both cases, however, the variability in modeling accuracy due to reflections of the
predictor variables is seen to be very small compared to the variability associated with the random
nature of the training data.

Several modifications of the MARS procedure that render it invariant under variable reflection
are currently under study. It remains to be seen whether they can provide approximations that are
as accurate as the method described here.

4.7. Low Dimensional Modeling.

The main advantage of MARS modeling over existing methodology is clearly realized in high
dimensional settings. It can, however, be competitive in low dimensions (n < 2) as well. Friedman
and Silverman (1987) studied its properties for the smoothing problem (n = 1) and showed that it
can produce superior performance, especialiy in situations involving small samples and low signal
to noise. These properties should extend to surface modeling (n = 2) as well, although detailed
studies have not yet been performed. Friedman and Silverman (1987) also studied this approach
in the special case of additive modeling (mi = 1). The method was shown to be competitive with
existing methodology in this application, again exhibiting superior performance in situations with
small samples and low signal to noise.

5.0. Conclusion.

The examples and simulation studies indicate that the MARS approach has the potential to
become a useful tool for data modeling. It possesses to some degree the the desirable properties of
the recursive partitioning approach; these are its adaptability, automatic variable subset selection,
and ability to exploit low “local” dimensionality. Moreover, it is able to overcome some of recur-
sive partitioning’s limitations; it produces continuous approximations with continuous derivatives
(if desired); it has additional adaptabilty to exploit functions with weak high order interactions,
thereby providing better approximations to functions that are nearly linear or additive; and it has
increased interpretability through its ANOVA decomposition that breaks up the approximation
into its additive and various interaction components.
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It is important to note that this is a new methodology for which there is, at present, very little
collective experience. Its results should be interpreted with some caution until their reliability is
tested over time in a wide variety of settings. No doubt as such experience is gained useful and
important modifications to this basic approach will become apparent.

A FORTRAN program implementing the MARS methodology described in ths report is avail-
able from the author.
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COMPUTATIONAL ASPECTS OF BAYESIAN METHODS

A. F. M. Smith, University of Nottinghan,

Given a likelihood /(x; 8) and prior density p(8), where x and 8
(both typically vector-valued) denote data and unknown parame-
ters, respectively, ti:r starting point for Bayesian inferences about
8 is the joint posterior density for 8 given by

o
[ iz 63p(0) 48

In fact, of course, we are usually interested in summaries of the
full joint posterior distribution. For example, attention may be
focussed on univariate marginal densities for some or all of the
components §; of ; bivariate joint marginal densities for various
pairs (6;,6,) of component parameters; or even on simpler sum-
maries in the form of posterior first and sccond moments. Alter-
natively, we may be interested in posterior summaries for func-
tions of onc or more of the comp. .nents of 8: for example, margi-
nal and joint densities for 6;/6; and 6,6,.

In all these cascs, the technical key to the implementation of
the formal solution given by Bayes' theorem, for specified likeli-
hood and prior, is the ability to perform a number of integrations.
First, we need to cvaluate the denominator of (1) in order to
obtain the normalizing constant of the posterior density; then we
necd to integrate over complementary components of @, or
transformations of &, in order to obtain marginal (univariate or
bivariatc) densitics, together with summary moments, highest pos-
terior density intervals and regions, or whawver. Except in cer-
tain rather stylized problems (for example, exponential families
together with conjugate priors), the required integrations will not
be feasible analytically and so efficient numerical strategics will
be required. Finally, the finite sets of numerical values obtained
after marginalization need 1o be reconstructed into a graphical
representation of a univariate or bivariate marginal posterior dis-
tribution.

We shall outline numerical intcgration strategies which have
proved efficient and reliable for problems of this kind. A briefl
account will also be given of the techniques used to produce
univariate density curves and contour represcntations of vivariate
densities.  Throughout, we shall provide diagramatic illustration
of the main ideas.

General accounts of approaches to implementing the Bayesian
paradigm arc given in Smith er al. (1985) and Smith et al.
(1987). More specialized technical accounts can be found in Nay-
lor and Smith (1982) and Shaw (1985, 1986a, 1986b). Applica-
tions of the kinds of techniques described here can be found in
Naylor and Smith (1983), Skcne (1983), Skenc et al. (1986),
Racine et al. (1986) and Shaw (1987).

We shall first describe an iterative quadrature strategy that has
proved effective for problems involving up to six parameters. It
is well known that univariate integrals of the type

f T e dr %)

m

are often well-approximaied by Gatss-Hermite quadrature rules of
the form

a

T wft,), 3
i=1
where 1; is the ith zero of the Hermite polynomial #,(s). In par-
ticular, if f(1) is a polynomial of degrec at most 2n- 1, then (3)
approximates (2) without error. It follows that, if A(r) is a suil-
ably well-bchaved function and

RV
g0) = h(:)(zml)"cxp[ . %(’7“) ] @)

then
L3

f g0 di = ¥ m,gz). (5)
- - t
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where

m; = w,exp({? W20, 2, = u+vN20y ©)

(seec Naylor and Smith, 1982). We sec, thercfore, that, expressed
in informal terms, Gauss-Hermite rules are likely to prove very
efficient for functions which closely rescmble ‘polynomial x nor-
mal’ forms. In fact, this is a rather rich class which, even for
moderate n (< 11, say), covers many of the likelihood x prior
shapes we typically encounter for parameters defined on (-eo, o),
Moreover, the applicability of this approximation is vastly
extended by working with suitable transformations of paramcters
defined on other ranges, such as (0,%0) or (a,b), using, for cxam-
ple, log(t) or log(r—a)—log(b—r), respectively. Of course, (0 use
(5) we must specify 4 and o in (6). It turns out that, given rea-
sonable starting values (from any convenient source; prior infor-
mation, maximum likelihood estimatces etc), we can successfully
itcrate on (5), substituting into (6) estimates of the posterior mean
and variance obtained using (5) based on previous valucs of m;
and z;. Moreover, we note that if the posterior density is well-
approximated by the product of a normal and a polynomial of
degree at most 2n-3, then an n-point Gauss-Hermile rule will
prove effective for simultaneously evaluating the normalizing con-
stant and the first and second momenis, using the same (iterated)
set of m; and z;. In practice, i is efficient to begin with a small
grid size (n = 3 or n = 4) and then to gradually increase the grid
size until stable answers are obtained both within and between the
last two grid sizes used.

Our discussion so far has been for the one dimensional case.
Clzarly, however, the need for an efficient strategy is most acute
in higher dimensions. The ‘obvious’ extension of the above ideas
is 10 use a cartesian product rule giving the approximation

[ ffn ) dndy = T n® L E mPg M, 2P, (1)
l. l‘
where the grid points, z,»j’), and the weights, m,f’) are found from
(6), subslituting the itcrated cstimates of 4 and o2 corresponding
to the marginal component ¢,.

The problem with this ‘obvious’ strategy is that the product
form is only efficient if we arc able to make an (at least approxi-
mate) assumption of posterior independence among the individual
components,

To overcome this problem, we first apply individual parameter
transformations of the type discussed above, then we attempt o
transform the resulting paramcters, via an appropriate lincar
transformation, to a new, approximately orthogonal, sct of
parameters. At the first step, this lincar transformation derives
from an initial guess or estimatc of the posterior covariance
matrix (for example, based on the observed information matrix
from a maximum likclihood analysis). Successive transformations
arc then based on the cstimated covariance matrix from the previ-
ous iteratfon.

We arc led to the following general strategy.

1) Reparametrize individual parameters so that the resulting work-
ing paramecters all take valucs on the real line.

2) Using initial estimates of the joint posterior mean vector and
covariance matrix for the working parameters, transform further
to a centred, scaled, more ‘orthogonal’ sct of paramclers.

3) Using the derived initial location and scale estimates for these
‘orthogonal® paramcters, carry out, on suitably dimcnsioncd
grids, cartesian product integration of functions ol interest.

4) lierate, successively updating the mean and covariance esii-
matcs, until stable results arc obtaincd both within and between
grids of specified dimension.

We now describe an itcrative importance sampling strategy
which has proved cffective in higher dimensions. The importance
sampling approach to numerical intcgration is based on the obser-
vation that, if f and g arc density functions,




[0 ax = [ 1£(x)/8(0180x) dx
= [1f®/g(x) dG(x) = Eglf(X)18(X)).

which suggests the ‘statistical’ approach of generating a sample
from the distribution G and using the average of the values of the
ratio f/g as an unbiased estimator of ff(x)dx. However, the
variance of such an estimator clearly depends critically on the
choice of G, it being desirable to choose g 10 be ‘similar’ 10 f.

In the univariate case, if we choosc g to be heavier-tailed than
f. and if we work with ¥ = G(X), the required integral is the
expected value off[G"(X)]/g[G"(X)] with respect to a uniform
distribution on the interval (0,1). Owing to the periodic nature of
the ratio function over this interval, we are likely to get a recason-
able approximation to the integral by simply taking some cqually
spaced set of points on (0, 1), rather than actually generating ‘uni-
formly distributed’ random numbers. If f is a function of more
ihan onc argument (k, say), an exactly parallel argument suggests
that the choice of a suitable g followed by the use of a suitably
‘uniform’ configuration of points in the k-dimensional unit hyper-
cube will prove an acceptable alternative to the ‘costly’ procedure
of generating ‘random’ uniformly distributed points in k-
dimensions.

However, the effectiveness of all this depends on choosing a
suitable G, bearing in mind that we need to have available a flexi-
ble set of possible distributional shapes, for which G ™! is avail-
able explicitly. In the univariate case, such a family defined on R
is provided by considering the random variable

Xy = ARU;- (1 AYR(1-U),
where U/ is uniformly distributed on (0,1), £:(0,1) > R 15 a
monotone increasing function such that limhA(u) = —oe and 0 <

A <] is a constant. The choice A = 0.5 leads to symmetric
distributions; as A > 0 or A — 1 we obtain increasingly skew
distributions (to the left or night). The tail-behaviour of the distri-

bution is governed by the choice of the function A, Thus, for
example, h(u) = logiu) leads to a family whose symmetric
member is the logistic distribution; A(u) = -wn(42(1 - u)] lcads

to a family whose symmetric member s the Cauchy distribution.
Morcover, the moments of the distribution are polynomials in A
(of corresponding order), the median is lincar in A, clc, so that
sample information about such quantities provides (for any given
choice of hy operational gumdance on the appropriate choice of A,
For details, sece Shaw (1986a). To use this family in the mul-
tiparameter case, we again employ mdividual parameter transfor-
mations, so that atl parameters belong to R, together with “ortho-
gonahizing” transformations, <o that parameters can be treated
“independently . In the ransformed setting, it s natural o con-
sider an atcrative importance samplhing strategy which atempts to
learn about an appropriate chowe of (7 for cach parameter.

As we remarked carher, part of this swategy requires the
spectfication of ‘uniform’ contigurations of poimnts an the k-
dimenzionat unit hypercube  This problem has, an fact been
extensively stadied by number theorists and systematic expen-
mentation  with suppested forms of
sequences has adentibed ctlectuve forms of configuration for
importance samphing purposes. For details, see Shaw (19X6b)
The general strategy os then the {ollowing

vanous fquast-random’

1) Reparametnize individuoal parameters so that the resulting work-
e parame’ s all take values on the real hoe

2 Using anrtal estimates of the joint postenor anean vedtor and
covartance matrix for the working parancters, transtorm turther
to g ventred. scaled, mare “orthoponal” set ol parimneicns

L4
1y In terms of these ranstormed paramicters, see oy [Jeon
I

for “sutable” chowes ot v op 10k

4) Use the anverse cdf transtormation o reduce the problem

that of calcalalimg g avoage oor g saitohle unatanm
contiyurationan the & dimensional hypercuhe

S Use anfonmation from s Ssample’ to learn aboot sbewness
tatbwayht cte for caihp 1 Foand beace chiocae heter”
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Jj=1....,k; as well as revising estimates of the mean vector
and covariance matrix.

6) Iterate until the sample variance of replicate cstimates of the
integral value is sufficiently smail.

In reconstructing either a univariate density or the contours of a
bivariate density, we begin with a set of density values at some
set of parameter values. In the context of the product rule quadra-
ture approach, the parameter values will correspond to grid points
selected by a quadrature rule. In the context of importance sam-
pling, the resulting configuration of spot-heigh's would typically
be too irregular for efficient graphical reconstruction and so a
mixed strategy is adopted, using a quadrature approach for the
parameters of interest and sweeping out the others by importance
sampling.

In cither case, the approach we adopt for the parameters of
interest is to fit splines to the logarithms of the density values.
For univariate reconstruction we use ‘not-a-knot’ cubic splines;
for contouring, we use tensor product splines. See also Smith et
al. (1985) and, for a much more detailed account, Shaw (1985).

The strategies outlined in this paper depend hcaviiy on the
availability of interactive computing facilitics with graphics capa-
bilities. At the time of writing (and for the foresecable future),
rapid changes are taking place in both technical and economic
aspects of the availability of appropriate computing environments.
The direction of these changes will clearly influence the form in
which Software for Practical Payesian Statistics will be packaged
and marketed, and this applies, in particular, to the software relat-
ing to these strategics. For the present, anyone interested in
obtaining some form of this softwarc should contact the author.
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A BAYESIAN APPROACH TO THE DESIGN AND ANALYSIS OF COMPUTATIONAL EXPERIMENTS

Toby J. Mitchell and Max D. Morris, Oak Ridge National Laboratory

0. Abstract

In a computational experiment, the data are produced by a
computer program that models a physical system. The experiment
consists of a sct of model runs; the design of the experiment specifics
the choice of program inputs for cach run. This paper centers on the
problem of prediction (interpolation), the goal of which is to devise a
design/analysis method which will provide predictions of model ouput
for input values not run, We adopt a Bayesian approach as the basis
for the analysis. Uncertainty about the response function is quantified
by choosing a class of probability distributions over the function space.
This leads to design procedures based on maximizing the expected
reduction in "amount of uncertainty”, where the latter can be defined
formally in terms of properties of the posterior distribution. Here we
usc as a design optimality criterion the determinant of the posterior
covariance matrix of the responses at the input configurations at which
we want to make predictions. This requircs maximization of the
determinant of the prior covariance matrix of the responses at the
design sitcs. We describe our computer algorithm for constructing
optimal designs, and give some cxamples of designs that it produces.

1. Introduction
1.1 Computer models and computational experiments.

There is widespread and growing use of computer modcels as tools
in scicntific research.  As surrogates for physical or behavioral systems,
computer models can be subjected to experimentation, the goal being o
predict how the corresponding real system would behave under certain
conditions. This paper is motivated by the goal of getting information
from computer models as cfficiently as possible.

Here we regard a computer model as a computer program that maps
a vector of input variables (parameters) ¢ into a vector of output
variables y, where ¢ and y are physically meaningful. We view y as a
function y (1) over some domain 7' in the space of the input variables.
This function is deterministic: if the program is run twice (on the same
computer) with the same value of ¢, the same valuc of y will result.

We consider a computational experiment 1o be a collection of -uns
of the computer model, made for the purpose of investigating y (¢) for
te T'. For convenicnce, we shall consider 7 1o be defined only by the
design variables, i.c., thosc variables that are changed during the
course of the cxperiment. In a typical experiment of 2 runs, the (*
computer run is made using inputs t,e T, i = 1,2, .., n; this collection
of input configurations is called the experimental design .

Thcere are scveral important general classes of problems that can be
approached through computational experiments, c¢.g., prediction,
sensitivity - analysis, uncertainty analysis, optimization, root finding,
and integration of output. Perhaps the most fundamental is the problem
of prediction of y(¢) at sites ¢ that have not been directly observed.
The design of cxperiments for this purpose is the subject of this paper.

We consider a solution to the prediction problem to include a
prediction cquation y(t), formulas for cvaluating the uncertainty of
prediction, and rules for choosing the design sites. Because of the
nature of our approach, which is described below, our methed is quite
similar (o interpolation, 1n that the prediction of y will be identical to
the ebserved y at values of 1 for which the madel has been run. Al
other values of ¢, our prediction will take the form of a probability
distribution, the mean of which, expressed as the function y(t), can be
used as a predicion cquation,

We approach the problem from a Baycsian pomt of view, under
which uncertanay about the function y s expressed by means of a
probabiity distribution over all possible response functions. Random
functions Caochistue processes, random fickdsy have been used as
maodels i kegnng and other spatial applications tor a long ume, not
generally inan overt Bayesian sense, however  The prediction problem
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?n spatial sculings is usually formulaied as the problem of making
inferences about the realization of a spatial stochastic process Y (1),
given the values of that process at a set of "sites" ty,..,t,. Sec
Ylvisaker (1987) for a discussion of problems of this general type and
of the associated design problems. Recently, Shewry and Wynn (1986)
and Sacks and Schiller (1987) proposcd and used design optimality
criteria based on spatial stochastic process models 1o compule optimal
designs for prediction in various settings. Kimeldorf and Wahba(1970)
were the first, as far as we know, o usc a stochastic process in an
explicitly Bayesian scnse, for the purpose of predicting a fixed but
unknown function. Only recently has there emerged an interest in
applying stochastic process models to the design and analysis of
computational cxperiments (Sacks, Schiller, and Welch, 1988).

In this paper, we shall focus on the problem of designing
computational cxperiments for prediction. We present our approach to
prediction, given a design, briefly in Section 2. In Section 3, we
describe a design criterion and our algorithm for constructing designs
that arc optimal with respect to it.

2. Prediction

We represent "knowledze” about the unknown function y (1) by a
stochastic process Y (1), where

(P1). Y (1) has a normal distribution with mean W and variance o2 (the
same for all 1), and

(P2). For any pair of sites te T, se T, the correlation between Y (1) and
Y (s) is a function only of the vector of differences d = -5, ic.,

P =Corr{Y (1), Y(s))=R{1-5) =R (d), 2.1
wherc R(d)=R(-d)and R(0)=1.

The posterior distribution of Y on any finite set in T, given the sct
of served responses y(D) on the sct of design sites D, is casily
obt. 1ed as a conditional multivariate normal distribution.

Let

Cp = Corr(Y(D).Y(D))

be the nx n matrix whose clements are the prior corrclations between
the responsces at al pairs of design sites. Let
rp(ty =Corr(Y(1), Y (D))

be the n-vector of prior correlations betwean Y (1) and Y (D).
Then the posterior distribution of Y (1) is normal with mean:

Moip =W+ ri(OC (v - )

(2.0)
and variance

Shp = 1 - rp()Cs rp (D, 2.3)
where J 1n (2.2) is an n-vector of 1's, and yp is the sct of observed
responses y€0') written as veclor. The posterior covariance of Y (1)
and Y{s)is

et = O Upu - rHOCH (). (2.4)

All knowledge about y (1) given the data and the prior process s
embodied 1n the posterior process defined by (2.2)-(2.4), which s
Gaussian hike the prior process, but is no longer stationary. Since we
shall use the posterior process for prediction, we shall often refer o 1t
as the “predictive process”  The mean of this process (2.2), viewed asa
function of ¢, can be taken as v(r), this is an interpolating funcuon,
stnce 1t passes through the opserved v 's. The postenor vanance 2.3
can be used as @ measure of uncertinty of prediction at site 10
necessanily 0 at the observed ates




3. Design
3.1 Design Crilerion

Supposc we want to design an experiment in 2 runs for prediction
at a finite set of n° sites T* 7', where n* > n. After the experiment is
rur, knowledge of y at these sites will be cmbodicd in the n’-
dimensional normal distribution of Y (T' D) generated by the
predictive process there. The mean p. | and the covariance matrix
L0 of this distribution can be obtaincd using (2.2)-(2.4).

We shall adopt as our design criterion the minimization of the
determinant of Z.. .. We refer to this critcrion as D-optimality
because, like the usual D-optimality criterion in the lincar modecl
setting, its goal is to minimize the posterior generalized variance of the
utknowns that onc is trying (o estimatc. Shewry and Wynn(1986) have
shewn that this is equivalent to maximizing the expected gain in
information (Lindley, 1956), where information is mcasurcd by
Shannon’s cntropy. Shewry and Wynn aiso showed that this is
equivalent to maximizing the determinant of Cp .

Given a correlation function, a D-optimal design can, in principle,
be found before any data on y are taken, since the optimality criterion
does not depend on y. Except in a few special cases, however, there
seem (o be few theoretical resulis available for finding such designs.
The designs constructed for this paper were obtained from a computer
algorithm adapted from DETMAX (Mitchell, 1974), which was first
developed for the purposc of constructing D-optimal designs for lincar
regression.  The optimization mcthod is based on a scries of
"excursions”, which arc scquences of designs in which cach design
differs from its predecessor by the presence or absence of a single site.
The first and last designs in an excursion have n sites; the intermediate
designs all have fewer sites. (This restriction (o designs with n or fewer
sitcs was put in o avoid numerical problems associated with the nearly
singular Cp, matrices that sometimes arose when the number of sitcs
became large. It ensures that Cp, for any design D encountered during
the excursion is at least as well conditioned as the starting design.)

The first step of cach cxcursion removes a site from the best current
design. At subsequent steps, a site is added, unless the design at that
step has alrcady been declared a “failure design”, in which case a site is
removed. (All designs cncountered since the most recent successful
cxcursion are designated as failure designs.) For the purposc of
checking a design for equivalence to a failure design, only the
determinants of their correfation matrices arc compared; thus falsc
cquivalence may occasionally be declared. All additions and deletions
arc made with the goal of maximizing the dcterminant of the
correlation matrix for the resulting design. By this criterion, the best
site ¢ 10 add o an cxisting design D is the one at which the variance
function 62, is greatest. It can also be shown that the largest
determinant after deletion of a site in L can be achieved by choosing
that sitc to be the onc associated with the greatest element of the
diagonal of C".

The scarch for the best site to add, i.c., the ¢ at which the variance
function (2.3) is maximized, is conducted over a grid in T. Except
when T has few dimensions or the grid is very coarse, it is not practical
1o make the scarch cxhaustive. Instcad we have incorporated a
muluple scarch procedure that can best be envisioned by thinking of a
set of n hikers trying to climb a hill. Each hiker stants at onc of the n
current design sites; at cach of these, the variance function is zcro. The
algonithm proceeds by stages, where in each stage, cach hikes takes one
step i the direction that allows him to increase his alutude the most.
We restrict him to consider only the 2k neighboring gnd points
associated with a change in exactly one of the k design variables, and
of course we don't let him step outside of 7. Under this procedure, the
variance funcuon (2.3) s evaluated at (at most) 2nk sites in each stage.
Samcumecs, two hikers will merge, 10 which case they conunuce as onc.
The search ends when all hikers have stopped at (local) maxima: the
site that corresponds to the largest of these 1s taken to be the best site o
hring 1nto the design at the current pointan the excursion
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The number of cxcursions made during cach scarch (“try”) ts
determined by restricting the maximum allowed deviation from the
nominal number of runs (n), the maximum allowed number of
successive cxcursions that fail to improve {Cp |, and the maximum
allowed number of “failure designs”. (We generally set these
restrictions o 4, 10, and 20, respectively.) When one of these
constraints causes the scarch to end, a check for local optimality is
made by removing cach design sitc in tun and attempting to replace 1t
by another, using the “hikers™ algorithm. If the latter succeeds in
finding the global maximum of the variance function in cach case, then
D 1s locally optimal in the sense that it cannot be increased by moving
a single site. However, the success of the "hikers” algorithm is not
guaranteed, and even if it were, the search would not necessarily
producc a global optimum.

Table 1 gives an example of a design (on a 6 grid in the 5-
dimensional unit hypercube) generated by our algorithm for the case
n =6,k =5, under a "product lincar" correlation function:

[
Corr(Y (1), Y(s))=R{d)=T](01 - (1 -p,)1d, 1),

j=

where d; =t ~s; and p,=099,j=1,.. k. (When gencrating
designs in the absence of previous data, we usually choose the
correlation function to be a product of identical onc-dimensional
corrclation functions.)

Table 1. Allegedly D-optimal
design in 5 variables and 6 runs.

SiteNo. 1, t 1y ty is
1 00 00 00 00 00
2 06 00 10 10 00
3 00 06 10 00 10
4 i0 10 06 00 00
5 10 00 00 06 10
6 00 10 00 10 06

This design exhibits some interesting geometrical structure. Each
of the sites in set A = { 2, 3,4, 5,6} is at distance 2.8 from its two
ncarest neighbors in A and at distance 3.2 from its two most distant
neighbors in A, and cach sitc in A is at distance 2.6 from site 1. (Here
“distance” is mcasurced along the grid.) Because of the high value of p.
there is a large region in the middle of T in which there arc no design
sites; predictions here rely heavily on information from the surrounding
design sites. This characteristic is even more pronounced for smoother
correlation functions. If we use the cubic correlation:

R(d)= ﬁn —(ar)d} + (hi6)1d, 1]

=1

with a and b chosen so that, if 5 and ¢ arc at opposite comers of the
S-cube T, Corr(Y(t), Y(5)) = Corr(Y'(1). Y’ (s)) = 0.99°, all six sitcs
n the optimal design arc on comers of T. In fact, this design turns out
to be equivalent to the D-optimal first order regression design in S
tactors and 6 runs (Galil and Kicfer, 1980).

Al the other extreme, designs that infiltrate 7 1o a zrcater extent can
be constructed by using correlation functions R(d) that decrease
rapidty with Id 1. For example, consider the correlation function:

L]
Ridy: [1n”
/-1
with o 00001 The best 16-run design (on a 2020 gnd in the unit
squarct produced by our algorithm n 10 tnies 1s shown n Figure 1. All




ten tries gave slightly different determinant values, so it is unlikely that
this design is truly optimum. There seemed to be little point in
undertaking more tries, however, since the compuling time per Uy was
about 45 seconds on a Cray X-MP. We did try various grid sizcs, (o
avoid penalizing ourselves by choosing too coarse a grid. We found
that 20x20 was sufficient; finer grid sizes require increasingly longer
computation time with little apparent benefit.

We favor this kind of design as an initial design in a stagewise
approach, in which the correlation function that is used to generate the
design sites at cach stage may change during the course of the
experiment. Methods for sclecting the correlation function via cross-
validation arc discussed in Currin, Mitchell, Morris, and Ylvisaker
(1988); somc applications to computer models are given there also as
cxamples. and applications are given there also.
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Additive Principal Components :

a Method for Estimating Additive Equations

with small Variance

Deborah J. Donnell*
Bellcore.

ABSTRACT

Additive Principal Components are a generaliza-
tion of linear principal components, where the
usual linear function, a;X;, defining the linear
principal component, 3. a,X;, is replaced by a
possibly non-linear function, ¢;(X;), to form an
additive principal component _, ¢:(X,). We in-
vestigate the analogy to the smallest linear prin-
cipal component. We present two approaches to
estimation — a finite dimensional method, based
on a matrix eigen decomposition, and an iterative
algorithm, based on a componentwise minimiza-
tion scheme.

The smallest additive principal component
describes nonlinear structure in a
high-dimensional space. Consequently it is diffi-
cult to interpret the estimated functions in terms
that are meaningful for the data analyst. For the
additive principal component, the task of inter-
pretation is almost intractable without tools for
real tiine graphical interaction. With these tools,
a pleasingly direct method for interpretation of
the functions in terms of the original variables is
possible.

1 INTRODUCTION

In this paper we investigate the additive ana-
logue to the smallest principal component, that
is, we estimate additive functions from multivari-
ate data which satisfy as nearly as possible the
constraint :

Such an additive constraint describes high-
dimensional structure in the data. Recall the
linear structure implied by a linear constraint,
l{z) = a-z = 0. If the data nearly satisfy
this constraint, they lie close to a linear mani-

*Post-Doctoral Member of Technical Staff, Statistics
Research Group, Beller re, 445 South Street, Morristown,
NJ 07960-1910. This work was partially supported by
the Department of Energy under Contract DE-FG06-
85ER 25006

fold of co-dimension p — 1. Analogously, an ad-
ditive constraint defines an additive manifold of
co-dimension 1, and data nearly satisfying this
constraint lie near this additive manifold.

Estimation of constraints is an appropriate
analysis tool when the search for structure in the
data is undirected, that is, no variables are des-
ignated a priori as predictors of a response of
interest. Hence it is a valuable exploratory tool
for investigating dependencies in multivariate ob-
servational data, where variables are usually in-
terdependent.

Additive principal components were first con-
sidered in the context of detecting instability in
the additive regression model. The importance
of recognizing nonlinear dependencies among the
predictor variables when fitting additive regres-
sion models is analogous to the importance of
detecting collinearity patterns when fitting lin-
ear models (Silvey 1969). Suppose we were to
fit an additive model ¥ =~ 3°7_, 6;(X;) to the
data, when there is an exact concurvity between
the predictors, that is, there are functions of the
variables such that 5 ¢;(X,) = 0. In this situa-
tion, the alternative fit :

14
Y ~ > (6, + 4,)(X;),

i=1

is indistinguishable from the initial one. While
exact concurvity is unlikely, even if the data come
close to satisfying this constraint, some or all of
the estimated 6; are likely to be unstable. A
method which enables us to examine how close
the data come to satisfying an additive constraint
would thus be a diagnostic check for global sta-
bility of the transforms in additive or ACE re-
gression.

Additive principal component analysis is
closely related to multiple correspondence anal-
ysis (Benzecri 1972, Gifi 1981), and to the non-
linear principal components of De Leeuw (1982a),
both of which consider largest principal compo-
nents of a transformation of the variables. These
techniques have been developed and used primar-
ily with psychometric data; their relationship to
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APC analysis is discussed in Section 4.
Following the formal definition of the APC, we
give a brief derivation of its characterization as
an eigenfunction of a compact operator in Section
3. In Section 5 we discuss methods of estimation.
The final sections are of a more practical na-
ture, concerned with using APC analysis as an
applied method : Section 6 discusses interpre-
tation techniques which we use to interpret the
smallest APC of a data set in Section 7.

2 THE POPULATION ADDITIVE PRIN-
CIPAL COMPONENT

2.1 Motivation

Strong additive dependence in a set of variables
exists if the data can be transformed so that
X1,Xa2,,..., Xp come close to satisfying an addi-
tive constraint Y ¢, (X;) = 0. Our objectiveis to
characterize the set of unknown transformations
¢1»¢2)- . ')¢p'

When the transformations are restricted to be
linear, we simply have the classical problem of
the analysis of collinearity. The simple rationale
that a linear combination of the variables with
variance near zero implies the variables are nearly
collinear, leads to the criterion :

(Za,-X‘-) subject to Za? =1

The variables are usually standardized, some-
what arbitrarily, to have E (X;) = 0 and
var (X;) = 1.

The minimum occurs for a an eigenvector for
the smallest eigenvalue of cov(X) = ¥, and the
random variable Za,»X,‘ is known as a smallest
principal component of X. A geometric char-
acterization of the smallest principal component
comes from observing that the linear function,
l; (x) = a- x, of the minimizing vector a, defines
a linear manifold of co-dimension 1 in p-space
through {; (x) = 0. This linear manifold mini-
niizes the expected squared distance from the ob-
servations to any linear manifold of co-dimension
1.

In short, there are three characterizations of
the vector a defining the principal component :

min var
acre

e 5 a; X, has minimal va:iince among all
linear combinations of the variables with

Sa?=1

ea-x = 0 defines the manifold of co-
dimension 1 minimizing expected squared

distance to the data.

e & is an eigenvector for the smallest eigen-
value of X.

A natural approach for a generalization of prin-
cipal components to additive functions 1s to ex-
tend one of these definitions of the smallest lin-
éar principal component of X. The minimum
variance characterization suggests defining & =
(¢1,-.-,¢p) as the vector of transformations of
the variables minimizing var Y ¢; (Xi) subject
to some normalizing constraint. Alternatively, a
geometric characterization would determine the
additive manifold described by the constraint
3¢ (Xi) = 0, which minimizes the expected
squared distance from the observations to any
additive manifold of co-dimension 1. Unlike the
linear case, the additive functions determined by
the above two definitions will not be the same.

In this paper we use the minimum variance
definition, which has two useful characteristics
not shared by the geometric approach. First, the
minimum variance criterion leads to a character-
ization of the additive principal component as an
eigenfunction, from which we gain a wealth of
theoretical insight into the behavior and prop-
erties of our estimator. Second, finite sample
estimates are easy to compute, since the crite-
rion involves estimation of variance rather than
estimation of the euclidean distance between a
manifold and the data.

2.2 Definition of the Smallest Additive Prin-
cipal Component

For simplicity, we will assume each additive func-
tion of an APC to be centered, and require the
variance to be finite. Formally, the APC-function
of the 1** variable, ¢, (X;) € H (X,), where :

H(X,) C {4 :E¢(X.)=0, var¢, < oo}
= LQ(X,)
The vector of APC-functions, ¢(X) =

(61(X1),... ¢p(Xp)), belongs to the product
space defined by the component spaces H (X,) :

$(X) € H(X)
H(X) % H(X)x H(X2)x - x H(X,)
C LX)

Definition 2.1 The smallest additive princi-
pal component of X = (Xy,...,Xp) in
H(X) 1is the random variable $(X) =

P_é (X)), (X)) € H(X,), minimizing
var Y7 4. (X,) subject to 3 V_  var¢, (X,) =
1.
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Note that the constraint, > var ¢, = 1, is a
natural analogue to the linear constraint, ) a? =
1, under the usual assumption that all variables
have equal variance. For if ¢;(X;) = a; X,
Y var ¢i (X;) = Y vara,X; = ) alvar X; =
Y a? = 1. Restriction of H(X) to linear func-
tions reduces to a definition of linear principal
components for the correlation case.

3 THE EIGEN CHARACTERIZATION

3.1 Introduction

In the preceeding section the definition of the
APC was presented as a natural extension of the
linear principal component to additive functions.
It is not unexpected, then, that the eigen char-
acterization of the additive principal component
can be derived by considering an extension of the
eigen characterization of the linear principal com-
ponent.

Linear algebra gives the well known equiva-
lence between the statements :

minimize var (3, 4;X;) subject to Y ;a? =
and
minimize (a, Za) subject to ||a||® = 1

where {-,-) is the usual euclidean inner product
in R?. From the latter statement, it follows
that the vector of coefficients a, since it min-
imizes the bounded, symmetric quadratic form
Q (a) = (a, Za), is an eigenvector of L. Thus, the
linear principal component solution can be solved
using standard linear algebraic techniques.

Analogously, the smallest additive principal
component can be characterized by either of the
following criteria :

® minimizes

var (3, ¢ (X,))

subject to Y . var¢,(X,) =1
and
% minimizes ($,P®)y
subject to  [|®|* =1

The inner product, {-,-), in the above, is the nat-
ural inner product on the product space of the
vector of APC-functions, H (X) :

(Q’Q,)H = 2.<¢H¢:)
= Y.cov (¢id)),

The corresponding norm is :
”q’“% = Z “45-“2 = Z var ¢,.
1 [}

P is the bounded, symmetric, linear operator of
the following lemma.

Lemma 3.1 The operator P : H (X) — H(X)
defined by the relationship

var Z ¢ =

is the mapping :

($,P®)y

[P2),=E | ¢; | X,

P is symmelric, non-negative definite and
bounded above by p .

Proof

(8. P2) = Tudi (B [T, 4 1%]))

= Ticov [4:(E [, ¢ 1%])]
= icov (8 (T, 45)
= cov (.40 (T, )]
= Vvar (Z.“f’i)-
P is bounded by p :

-8
-

P2l = LAY, 48
< T2
= o3 4l

p (T, 1)

The maximum of }; ||¢;|| under the constraint
14512 = 1 is attained at ||4,]| = p~ . Hence,

IA

Pl < p(5,lel)

<
< P
The inequality is sharp, with equality occurring
when X,‘ = XJ', ¢,’ = ¢J Vi,j.
Symmetry and non-negativity of P follow from
the properties of var (-). &

The eigen characterization of the APC now fol-
lows almost trivially.

Theorem 3.2 The smallest eigenfunction of the
operator P, tf it ezists, is a vector of APC-
functions for the smallest additive principal com-
ponent of X.

Proof

Since (®,P¢)y = var ) ¢, by Lemma 3.1,
and Y var ¢, = ||®||} by definition, a func-
tion vector ¢ € H (X) minimizes ($,P¢)y
subject to ||®||% iff the set of transformations
{#1,92....,$p} minimizes var 3 ¢ (X,) under
the constraint Y var ¢, (X,) = 1.
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From the theory of symmetric operators, Jor-
gens (1970), Th 6.7 p.125, it is well known that
¢ € H(X) minimizing (®,P®)y subject to
||®)lg = 1 is an eigenfunction for the smallest
eigenvalue of P ( where it exists ) . &

An immediate corollary to Theorem 3.2 is :

Corollary 8.3 Suppose & = (¢1,¢2,...,¢p) is
a smallest eigenfunction of P belonging to the
smallest eigenvalue A, with ||®|| = 1. Then :

1. A smallest APC of X is ¢ = > i,
2. The variance of this smallest APC is .

Proof The first is immediate; for the second,
var ) ¢i = (2, P&)g = (§,28)y = I8

A further consequence of the eigenfunction
property of the smallest principal component, is
the following characterization as a solution of the
APC stationary equations.

Corollary 3.4 A smallest additive principal
component with variance A satisfies the station-
ary equation :

P® =29

Conversely, any ® satisfying the stationarity con-
ditions for minimal A < 1 is a smallest APC of
X.

The stationary equation implies a strong set of
identities for every APC-function : for each 1,
the conditional expectation with respect to X; of
the APC is a multiple of the i*®» APC-fuaction,
that is,

E (D6 1Xi| = dminds Vil
J

Moreover, the multiple factor, A, is constant for
all of the APC-functions.

Notice that if the smallest eigenvalue Apin =~
0, the conditional expectations of the smallest
APC with respect to all variables are almost zero.
In this sense we recall our initial motivation: to
find functions that come close to satisfving the
constraint 3 ; ¢, = 0.

3.2 Infinite Dimensional Function Spaces

We now address the issue of existence of the
smallest eigenspace. If H (X) is finite dimen-
sional, the spectrum of the operator P is discrete,
and the smallest eigenspace exists and is dis-
tinct. However, for infinite dimensional H (X),

although the spectrum of P is bounded, the ex-
istence of the smallest eigenspace is complicated
by the possibility of P having a non-trivial con-
tinuous spectrum or spectral values that are not
eigenvalues. We can rule out these undesirable
possibilities by adopting suitable compactness
assumptions, following Breiman and Friedman
(1985).

Assumption : The
restricted operators P, : H (Xy) — H (X;), de-
fined by P;/x (h (X)) = E (h(Xk) | X;) are com-
pactfork#4i,i=1,...,p.

This assumption is only required for infinite di-
mensional H (X;). A sufficient condition for com-
pactness to hold is given in Breiman and Fried-
man {1985). It is straightforward to show that
the assumption of compactness implies the spec-
trum of P is essentially discrete, since its con-
tinuous spectrum consists of at most one point,
namely one. A smallest eigenvalue of one corre-
sponds to the null situation of mutual indepen-
dence of all variables.

4 RELATED LITERATURE

The idea of using a larger class of functions
in principal component analysis is not new: a
simple polynomial extension, for instance, ap-
pears in the statistical literature in Gnanadesikan
(1977). By far the most comprehensive treat-
ment of extensions of principal components anal-
ysis, however, are the optimal scaling techniques
developed by psychometricians. Multiple corre-
spondence analysis (Benzecri 1972,Lebart et al.
1984) and non-linear principal components anal-
ysis (De Leeuw 1982a, Gifi 1981) are techniques,
used almost exclusively with categorical data, for
determining optimal scalings of the categories —
which is equivalent to estimating step functions
of the variables — with low dimensional struc-
ture.

In this paper we focus on the smallest APC,
corresponding to the smallest eigenvalue. In psy-
chometrics, the intended application is an ex-
tension of the use of the largest linear principal
components for dimension reduction. The largest
APCs ate clearly interesting in their own right,
however their interpretation and potential appli-
cations are very different to those of the small-
est APC. Nonetheless, we acknowledge that these
methods from psychometry use essentially the
same notions as additive principal components.

The optimal scalings of multiple correspon-
dence analysis are equivalent to the largest APCs
defined over the finite dimensional function space
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spanned by normalised indicator functions of
the variable categories. Multiple correspondence
analysis examines the largest eigenfunctions of
the corresponding finite dimensional operator.

The non-linear principal components or PRIN-
CALS (Principal Components by Alternating
Least Squares) analysis allows only one set of
transformations of the variables, rather than the
multiple transformations of multiple correspon-
dence analysis. The transformations are defined
to be optimal for some fixed dimensional repre-
sentation, d, hence for d = 1, they are equiv-
alent to multiple correspondence analysis, but
for d # 1, PRINCALS gives a different solu-
tion. De Leeuw (1982b) has extended PRIN-
CALS to continuous variables. The functions are
estimated using a finite dimensional B-spline ba-
sis, hence the problem can be recast as a finite di-
mensional eigenproblem, solvable by linear tech-
niques.

5 ESTIMATION OF THE ADDITIVE
PRINCIPAL COMPONENT

5.1 Introduction

The smallest additive principal component cor-
responds to the smallest eigenvalue of the sym-
metric non-negative definite operator P. Thus,
for estimation of the additive principal compo-
nent we turn to known methods for calculating
eigenfunctions.

If all the function spaces, H(X;), of the APC-
transforms are finite diinensional, estimation can
be simplified to finding the smallest eigenvector
of a finite dimensional matrix. We also present an
iterative algorithm based on the power method of
estimating eigenfunctions, an approach which is
valid in the population for general H(X).

We shall not discuss the stability of these es-
timation methods in depth, but it is important
to bear in mind that estimating the smallest
eigenfunction is an intrinsically unstable prob-
lem when the second smallest eigenvalue is close
to the smallest eigenvalue. Any estimation pro-
cedure will have difficulty finding a unique, stable
estimate of the eigenfunction in this case.

5.2 The direct solution for filnite dimen-

sional APC

Assume the function space for the i** variable,
H(X,), is finite dimensional. Then for some finite
set of orthogonal basis functions, {fix},

H(X;) = span{fi(X;):E fue(Xi) =0,

Since ¢ € H(X:) © ¢; = Lo, air fir(X:), the
APC criterion can be written :

var (3, ¢:) var (3, T4 aa fie (X))
var (3, Fi(X;)a:)

]

= a'var (F(X))a
where F.(X,) = (f.-l(X,')...f,'d‘.(X,')),
8: = (a'ilt"'1a€d.')t
F(X) = (Fl(Xp)v-':Fp(Xp))
a® = (aj,...,a}).

The normalising constraint is simply :

Svargs = Y, Z:‘zl var a;i fik

= ala=1.

Estimating the smallest APC simplifies to cal-
culating the smallest linear principal compo-
nent of the basis vectors, F(X). The small-
est APC is the smallest linear principal compo-
nent of F(X): for the eigenvector a, the APC
is 3, 4:(X;) = F(X)a; the i** APC-function,
$i(X:) = Fi(Xi)au.

Finite sample estimation is straightforward:
express each basis vector as a functional
of its distribution function, F;, fix(Xi) =
0. (F:). Replacing F; with the empirical dis-
tribution function, F*, yields finite sample es-
timates : fir(zi) = Ci(FP). An APC esti-
mate can be obtained from the eigen decom-
position of the correlation matrix of F(x) =

(fu(fl)» f12(32) .. fpdp(“:p))-

5.3 The iterative method

Iterative calculation of the smallest eigenfunc-
tion uses a componentwise minimization scheme,
where each function is estimated in turn, using
the function estimates of the previous iteration.
The iterative approach is important both because
it enables estimation for a class of functions that
are only constrained to be “smooth”, and be-
cause it provides an alternative to the expense
of an eigen decomposition when the dimension of
H(X) is large.

5.3.1 A power algorithm

It is easily shown for a symmetric, non-negative
operator, that for some initial $'°), the sequence :

Pk&(0)

——  k=12,...
| PERO)]

converges a.s. to the eigenfunction of P belong-
ing to the maximal eigenvalue. This can easily

E (fir (Xi)fir'(X;)) =0,k = 1,...d,}be adapted to find the eigenfunction belonging
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to the smallest eigenvalue, since there is a simple
linear relationship between the eigenvalues and
eigenfunctions of P and pI — P.

The eigenvalues of P are non-negative and
bounded above by p. For © an eigenfunction of
P with eigenvalue A,

(pI - P)O =p@ — PO = (p— 1)O.

It follows that P and pI — P have common eigen-
functions, however the order of eigenvalues for
the shifted operator, pI — P, is reversed. Thus,
the sequence :

(p1 — P)*(®
[l(pI — P):&O)|

converges to the smallest eigenfunction of P. The
value p can be replaced by the largest eigenvalue
of the operator P, in any specific problem, which
will improve the rate of convergence dramati-
cally.

The iteration scheme employed is an alter-
nating conditional expectation algorithm, in the
same vein as the algorithm used to estimate
ACE (Alternating Conditional Expectation) re-
gression. Algorithmically, the sequence is gener-
ated as follows :

Algorithm

Choose initial transformations ¢[10], ¢[20], ceey ¢£,0]

Repeat 1 and 2 for N = 1,2,... [Outer Loop ]

(1)Do  fori=1,...,p[Inner Loop ]
b=l - E(T0 VT X).
(2)Standardize

(¢[1N]7¢[2N])“'1¢LN]) —

where ¢ =

(C¢1)C¢2, ‘e ’f¢p)
(Xivarg,) *

Until var Y ¢>£N] converges.

Note that while in the ACE regression algorithm,
each ¢, is updated to its new transformation as
the inner loop proceeds, we obtain the new p-
tuple using only the previous p-tuple throughout
the entire inner loop.

The iterative algorithm, as a version of the
power algorithm, shares its shortcomings as a
method of estimation: it is prone to difficulties
associated with finding local, rather than global

stationary points, hence it can be sensitive to
starting values; convergence will be slow when
neighbouring eigenvalues are close.

Obtaining finite sample estimates using the
iterative method essentially entails choosing a
method for estimating the conditional expecta-
tion term of the inner loop. If H(X) is finite
dimensional, this is easily done. If H(X) has in-
finite dimension, approximate solutions are com-
puted using smoothing techniques.

5.3.2 Finite dimensional

For the finite dimensional H(X;), each condi-
tional expectation operator has the decomposi-
tion :
E(¢]Xi)= Z(d’yfik)fiks
2
so each inner loop step is simply a linear least
squares regression of ¢ = Sidion fiy... fia,

E($1X) = Tuld fu)fur-

Noting that fix L fix, it is easily shown the inner
product, (qz, fix) are the coefficients of the linear
least squares regression of 3 . #; on fi; ... fia,.
Finite sample estimates are obtained in the ob-
vious way, the inner loop step is simply :

P
~t -~
(new) (old) (old)
a; —pa”" — F; ( E F;a™),

1=1
and ¢$new)($‘) — a:new)p‘

5.3.3 Infinite dimensional

A powerful and practical alternative to finite
dimensional estimation techniques is estima-
tion of conditional expectations using scatterplot
smoothers.

Let S; denote a smoother with respect to X,.
The inner loop step is implemented as :

o — (r =15 [ STglNY
J#s

Since S, is typically not a projection operator,
it is important that d>£N_l] is excluded from the
smoothed term. The value 7 is an estimate of the
largest eigenvalue of P.

The advantages of using a smoother for esti-
mation in terms of flexibility, interpretability and
cost are obvious. The disadvantage is that most
smoothers are non-linear, hence mathematical
analysis of the estimation procedure is usually
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not feasible. Our experience, however, matches
that of Breiman and Friedman (1985) with the
ACE algorithm: with good starting guesses the
iterative procedure generally converges to accept-
able estimates of the minimizing functions.

We have presented both a direct and iterative
method for computing APC estimates, which are
equivalent when the function spaces are assumed
known and finite. In practice, the iterative algo-
rithm implemented with a scatterplot smoother
may be a preferable method, particularly for ex-
ploratocry analysis, since smoothing techniques
place far fewer restrictions on the function space.
Unfortunately, justification for this procedure is
heuristic for the most part, as smoothers are not
usually projection operators. Nevertheless, in the
ensuing examples, we use the iterative algorithm
with a scatterplot smoother for estimation of the
conditional expectation. 1

6 INTERPRETATION OF ESTIMATES

Using the smallest APC as an applied tech-
nique for multivariate analysis of a dataset, re-
quires careful consideration of the properties and
interpretation of the estimators characterizing
the APC: the eigenvalue; the APC; the APC-
functions. However, unlike a linear analysis, ex-
amining these estimates alone is not sufficient
to infer the dependencies between the variables.
The APC determines a dependency linear in the
transformed variables, so unless the transforms
themselves are linear, translating this depen-
dence to the original space is far from easy. We
suggest a graphical technique using simultaneous
highlighting of plots to aid in understanding the
concurvity.

6.1
1. Eigenvalue : var (3, ¢.)

The eigenvalue measures the strength of con-
curvity, and by definition is bounded be-
tween 0 and 1 : 0 corresponds to exact con-
curvity, 1 to mutual independence of trans-
formed variables. The size and spacing of
different eigenvalues can warn about poten-
tial difficulties with stability and uniqueness
: since A = 1, instability becomes more likely
as ) approaches 1.

The estimates

2. APC :Zi ¢.‘

The smallest APC, by definition, has min
imal variance, hence interpretation of the
APC vector is akin to a residual analysis.

Ideally, it will be distributed symmetrically
about zero; departures from symmetry, such
as outliers or grouping in the APC, indicate
cases which are unusual with respect to the
concurvity relation.

3. APC-function weights: sd (¢:(X:))

The 1elative scale of the APC-transforms, as
measured by the APC-function weights, in-
dicates the relative importance of the vari-
able in the APC : a zero weight indicates no
contribution, a large weight, a large influ-
ence.

4. APC-functions : ¢;(X:)

Plotiing ¢;(X,) versus X, reveals the shape
of the transform, which can indicate the sen-
sitivity of the values of X, in the depen-
dence : a step function indicates sensitiv-
ity only between corresponding levels of the
variable, an asymptote defines a region of
relative insensitivity.

6.2 Interpretation using graphics

Suppose for a data set, x, we have estimated the
smallest APC, and its eigenvalue is small, imply-
ing near concurvity between the variables. The
transformed data, ®(x) have the strongest lin-
ear dependence achievable —how can we inter-
pret what this linear dependence of transformed
variables implies for the relationship between the
original variables ? Simultaneous highlighting of
scatterplots of the data facilitates the interpreta-
tion of the concurvity.

Simultaneous highlighting requires a graph-
ics capability that is most naturally suited to a
high resolution graphics terminal equipped with
a flexible pointer device, such as a mouse; how-
ever it can also be effective with static plots. For
a set of plots displaying different variables of the
same data set, we want to select any group of
cases in any plot and have the selected cases high-
lighted in all the remaining plots; thus a subset of
cases are highlighted] simultaneously in all plots.
Selection and highlighting are usually indicated
by a change in color, size or symbol of the se-
lected cases.

The use of simultaneous highlighting for inter-
preting an APC is best illustrated by a simple
example in three variables.
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Figure 1: The APC-function plots of the smallest APC. var (}_, ¢;) = 0.084. Highlighting of large
values of ¢;(X,) indicates a strong relationship between X, and X,

6.3 An example: Interpretation for a three
variable APC

The smallest APC of z,,z2,z3, estimated using
the iterative algorithm with the supersmoother,
has variance 0.084 — hence the data almost lie on
a surface in 3-space. The variable weights are :
sd¢; = 0.71, sd ¢, = 0.71, sd ¢35 = 0.03,
so we can conclude the third variable is not im-
portant in determining the relationship betwcen
the variables. The APC-functions are plotted in
Figure 1.

For the moment, consider ¢(x) and x to be
distinct data sets : the former has a strong linear
structure which we want to use to explore the
structure of its untransformed version. Display
the two data sets together in the 3 scatterplots :
$1 Vs 21, $2 Vs T3, 3 Vs z3; so $(x) appears in
the horizontal marginal projection, x in the ver-
tical marginal projection. The small variance of
the APCimplies ¢,, ¢, and ¢; are almost linearly
dependent : ¢;+¢p2+¢3 = 0. As sd(¢a3) is small,
the values of ¢$; are always close to gero, hence
low values of ¢; will constrain values of ¢; to
be high. Selecting low values of ¢;, as in Figure
1, and simultaneously highlighting the selected
cases in the other plots illustrates this constraint.

Now, highlighting enables us to use the lin-
ear dependence of the transformed variables to
reveal the dependence between the original vari-
ables. In Figure 1, low values of ¢; occur when
z; is extreme (either high or low); high values
of ¢, when z; is central; in the plot of z3, the
selected points are evenly spread along the hori-
zontal axis, confirming the observation that this
variable does not determine the concurvity. The

constraint ) . ¢; = 0, for low ¢;, can be inter-
preted in the variables x : cases with values of
z2 near zero will have either high or low values of
z1. Continuing with selection of cases by condi-
tioning on values over the entire range of ¢, we
can understand the configuration of the variables
in the original scaling. In this case, the relation-
ship between z; and z; is easily understood to be
circular, hence the vaciables ic on a cylinder ori-
ented lengthwise along the z3 axis, Figure 2. In
general, conditioning on the values of each trans-
form in turn, much more complex relationships
can be explored using this technique.

7 Boston Housing Data

The variables for this example are the variables
selected by Breiman and Friedman (1985) as ex-
planatory variables for median housing values in
Boston -

Noxsq Nitrogen Oxide concentration in pphm
squared.

Tax Full Property Tax rate

Ptratio Parent Teacher ratio of the town school
district

Lstat Proportion of population that is of lower
status

Roomsq Average number of rooms squared

The smallest APC of the five variables is esti-
mated, and shown in Figure 3. The variance
of the APC is 0.035, hence there is strong ev-
idence that dependencies exist. The estimated
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Figure 2: The configuration of the dataset in Example 6.1. The variables lie on the surface of a

cylinder

transforms indicate Tax as the major dependent
variable in the smallest APC. This transform sep-
arates the two highest Tax values from the rest
of the data — highlighting of these values show
these cases have an almost exact correspondence
in Ptratio, and have relatively high values of the
pollution indicator, Noxsq. The smallest APC
has identified a group of town districts ( the dis-
tricts explain the close correspondence between
Tax and Ptratio) with high property taxes, and
high pollution.

The interpretation thrcugh highlighting de-
pends quintessentially on the additivity of the
APC relationship : from this follows the linear-
ity between transformed variables that leads to
the highlighting method. The essence of the idea
is that the APC-transforms guide selection of the
cases for each variable, so that the nature of the
dependence is clear.

8 CONCLUSION

As a natural extension of linear principal com-
ponent methodology, additive principal compo-
nants have many potential fields of application.
In psychometrics, where multiple correspondence
analysis and non-linear principal components
analysis have gained wide acceptance, the utility
of APC techniques does not have to be argued.
The use of the smallest APC as a method for de-
tecting high di.nensional structure in data, struc-
ture that cannot be easily detected even with so-
phisticated graphical tools, is a novel approach
to multivariate data analysis.

The elegant Hilbert space theory underpinning

the APC presents a strong case for this general-
ization of linear principal components. The char-
acterization as an eigenfunction provides a large,
well understood body of literature with which to
approach theoretical considerations, and the task
of estimation.

As an applied method, concern centers on two
issues: the reliability of the estimates and the ac-
cessibility of the information it provides. Meth-
ods of assessing reliability, based on asymptotic
results for eigenvalue estimation, are well known
for the direct estimation methods; there is a lack
of such results for general smoothing techniques.

The interpretation techniques we have pre-
sented are a first attempt at providing a read-
ily accessible method for understanding the non-
linear dependencies of the smallest APC. This
task of interpretation is not an easy one, clearly
there are many approaches yet to be explored.
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STOCHASTIC TESTS OF FIT

P.W. Millar, University of California

0. Introduction.

This paper describes a method for using controlled
randomization, coupled with computationally intensive
raethods, to resolve computational problems arising from
a broad class of goodness of fit tests. Since the models
whose fitness is being assessed here are, in general, non-
parametric, a certain amount of care is necessary in
choosing methods of numerical implementation. Issues
surrounding the choice of method are discussed in sec-
tions 1,2. The main new result (cf., sec. 3) is a very gen-
eral asymptotic representation theorem which, among
other things, can be used to justify asymptotically both
the methods proposed and the validity of bootstrap
methods for calculating critical values from the approxi-
mating expressions.

1. Computational difficulties in certain tests of fit.

Let x{, Xy, . . . , X, be iid, R9-valued random variables
with unknown common distribution G. Let © be an
index set, and [Pg, 8 € ©} a statistical model that can be
either parametric, semiparametric, or non-parametric. An
important question is to decide whether the model Py}
fits the data; more precisely, it is desired to test the null
hypothesis that G belong to {Pg, 8 € ©]}.

A reasonable class of tests can be described as fol-
lows. Let B be a Banach space, Ty a B-valued function
of 6, and T, a B-valued function of the data x, . . ., X,.
If | - | denotes the norm of B, then a plausible goodness of
fit statistic is

(1.1) g?énm IT, - Tl

the hypothesis being rejected for large values. While this
recipe is reasonable in a large number of situations, the
statistic (1.1) is incomputable, in general, for several rea-
sons. To understand the computational difficultics sur-
rounding (1.1), and to understand the computationally
intensive substitutes for (1.1) which we develop later on,
let us first look at several examples of statistics of the
form (1.1).

Example 1.1: classical statistics. Let the data be real
valued, let {Pg} be a parametric family of probabilities on
the line. Let Ty be the cdf of Pg: Ty (1) = Py {x; < t} and
lett. T, be the empirical cdf of the data:
T, =n'ZI{x; <t). The Banach space B above can
be taken to be the collection of real bounded functions f,
with norm |f] = sx:plf(l)l (e, B=L,(R"). Then (1.1)

becomes the uvsual Kolmogorov-Smirnov goodness of fit
statistic, whose properties are well known if @ consists of
a single point.

To obtain a different classical statistic in this frame-
work, let 4 be a probability on R', and let B be the space
of real functions f with norm |f}? = Jf(s)zu(ds) (s0 now
B = L2(n)). Then, with Ty, T, as before, and the norm
just given, (1.1) is a variant of the Cramer-von Mises
goodness of fit siatistic.
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For the remaining examples, we shall, for convenience
deal mainly with one particular space B. To describe it,
let S¢= (se R%:|s| =1} be the unit spherical shell of
RY. Define the halfspace A (s,t) by

(1.2)  AG.) = {xeR¥:x's <1t).
If P is any probability on RY define P (s,t) by
(1.3) P(s,t) = P{A(,1)].

By this means, the probability P is identified with an ele-
ment of L_ (S¢ x R!), the Banach space of bounded con-
tinuous function on $¢ x R! with supremum norm. For
d-dimensional data, half-spaces are the simplest class of
sets which remains invariant under affine transformation
and wbhich separates measures: if P(A) = Q(A) for all
halfspaces A, then P and Q are ider” ' as measures on
the Borel sets. In certain problems, such as the location
model below, halfspaces fit in with the structure of the
model in an elegant way, leading to a much simpler
analysis than one based, e.g., on lower left quadrants (cf
(2.2c) below).

Example 1.2: parametric models. Let @ be a subset of
RY, so that { Pg. 0 € O} is a parametric model. A good-
ness of fit test of the form (1.1) is then

(1.4) inf n”zsupl’f'n(s, 1) — Ta(s, )]

[: <] IX)

where To(s,1) = Pg[A(s,1)}, and T,(s,0) = P, (A(s,1))
and where P, is the empirical measure of x;, ..., x,.
One especially important case is when {Pg} is the
collection of nommal distributions on RY with unknown
mean and covariance. Another important example, dis-
cussed briefly later on, concerns the Fisher distributions
on the unit spherical shell in 3 dimensions. In this latter
case, _the supremum in (1.4} becomes
s:épnman (C) ~ Pg(C)| where C ranges over all spheri-

cal caps on S3.

Example 1.3: symmetric location models on R%. In R¢
there are many notions of symmetry for random variables
— for example,

(a) ‘‘simple symmetry’’: the rvX has the property that
both X and -X have the same distribution

(b) ‘‘isotropy’’: rvX has the property that X and yX have
the same distribution for every orthogonal transformation
Y. See Beran and Millar, 1988c, for further develop-
ments. Let Fy denote the collection of all probabilities on
RY that are ‘‘symmetric” according to, say, one of the
possibilities just suggested. The F, symmetry model
asserts that for some unknown 1 € RY and some wunknown
F € F,, the centered data x; — ., . . ., x, = 1} have distri-
bution F. The parameter set © then consists of all pairs
8 =M. P, neR!Fe Fy Py is the probability given by
Pg(A) = F(A - 1), and (1.1) becomes

(1.5) inf n"2sup |1, (s,0) - Tg(s,0]

m.P st
where, as usual Tp(s.) = Po(A(s,1),  T,(a.t) =
P (A(s.1).




Example 1.4: Logistic model. Here the data
X1, . . . . Xo takes the form x; = (y;, z;). where y; takes on
only the values 0,1 and where z; are iid R%-valued with
distribution F. If B = (Bo.By, ..., By € R*! and if F is
a probability on RY, then the logistic model asserts that
Ply, =11z} =P@B.z), where log P@B;2)
[1-PB.2))' =By+Byz, with By=@By....BRy
Then 6 = (B,F) where B ¢ R¥*! and F is the probability
governing the covariates z;, ..., zg. The family Py is
given by Pgly;=1,z¢ A) = J'P(B; z)F(dz). Define

A
Tiso= | (1-P@B:2)' PPB:2'Fda, i=01

. A(sa)

and 1‘",‘,(5,()(=) ntE1{y; =iz € AGs,0), i=0,1. Set
Tg = (Tg,Té), ’f‘n = (’i‘e,’f‘é), random elements in the
Banach space B = L. (8% x R) x L (8¢ x RY). With the
Banach space just mentioned (the norm is the maximum
of the norms of the factor spaces), the test statistic (1.1)
for the logistic model is, with the above choices of 'i',,,
Tg, B, given by (1.5)

With these examples behind us, we can now easily
see the computational difficulties surrounding (1.1). First,
the computation of igf will, for the supremum-type norms

described above be intractable. In the location and logis-
tics models, this calculation involves an infimum over an
infinite dimensional collection of probabilities. Actually,
this particular calculation is already intractable (for
supremum norms) in the Gaussian and Fisher cases
described in_example 1.2. Second, the calculation for
fixed 8 of [T, ~ Tgl, is also intractable: in the examples
1.2-1.4, it involves computing the supremum over the col-
lection of half-spaces in RY. Finally, even the computa-
tion of Tg(s,t) = Py (A(s,1)) in examples 1.2-1.4 is typi-
cally intractable. In Gaussian parametric situations, the
calculation is simple, because of properties of the normal
distribution; on the other hand, for the Fisher distributions
on §3, the calculation of Te (s, t) (the mass given a partic-
ular ‘‘spherical cap’’ by a particular Fisher distribution) is
intractable and must be obtained by approximation.
Equally difficult computational difficulties can arise in the
logistic and location models.

This paper describes very general, computationally
intensive methods which can successfully confront the
numerical intractability of (1.1). These methods involve
(a) replacing the parameter set © by a (random) subset
©, (b) replacing the norm || of B by a random norm |-},
and (c) replacing the functional Ty by an approximating
(random) functional Té“). The computationally feasible
replacement of (1.1) takes the form

(1.6)  min 2T, - T,

Because of the possible intinite dimensionality of ©, the
choices of | |, ©, must be made with some care; issues
surrounding these choices are discussed in section 2.

2. Stochastic Methods.

This section discusses issues surrounding the choice
of ®,. T§”, and |-|, in the formuia (1.6)

(2.1). Search of ©. Henceforth, let us call . ' &
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©, < © used to construct (1.6), a search set for @, if ©,
is random, we call it a stochastic search set. Throughout
the rest of the paper, © is assumed to be a subset of a
normed space.

Search method (a): sieves on ©. Although the statistic
(1.1) is generally incomputable, it is often theoretically
intractable as well, because either the differentiability
hypothesis of standard minimum distance theory may fail
on ©, or else the non-singularity hypothesis fails; for
example differentiability problems arise in the location
model and non-singularity falls for certain regression
models (cf. Millar 1982). (These concepts are defined in
section 3). It may be possible, however, to find (non-
random) subsets ©, T ©, such that these hypotheses hold
on O, sufficiently well that an asymptotic analysis may
proceed, albeit with technical complications. The
difficulties are reminiscent of those found in maximum
likelihood estimation on infinite dimensional @ (cf.
Grenander, 1981; Geman, Huang, 1982) where the ©, so
introduced are called ‘‘sieves’’.

The theoretical difficulties have a counterpart in sound
intuition: it is undesirable to ‘‘over fit’’ the model relative
to the data at hand. While sieve methods are of consider-
able theoretical interest, they frequently leave, in the
situation of goodness of fit statistics like (1.1), a computa-
tional problem as bad as the original one

Search method (b): simple searches of ®. A different
modification of (1.1) is to replace inf® by a minimum
over a finite subset ©, < ©.

How should a finite search set be chusen? The set @
is infinite dimensional, perhaps bounded, but it may not
be precompact. In this case it would not be possible to
construct a finite €-grid over ®. Even if © were compact,
and thus there exists such a grid, actual construction of it
could be formidable, except in very special cases. For
example, construction of an €-grid over all the probabili-
ties on the unit ball of RY appears to be intractable; such
a difficulty can arise in both location and logistic models.
Finally, construction of €-grids is, in general, a much
more ambitious undertaking than the one required to pro-
vide a decent approximation to igf.

Another suggestion might be to construct iid ®-valued
random variables Y;, ..., Y;. and take @, to consist of
the values of this sample. Except in special cases, there
may be difficulty in carrying out this construction in a
computationally feasible way.

A more fundamental difficulty centres on the fact tnat
if Py is the actual data distribution. then typically
(inet;l'f"n — Tg| achieves its minimum within a ball of

radius cn"? about 8, (see section 3). On the other hand
it can be shown (Millar, 1988) that for many bounded,
infinite dimensional @, the Y;-search, 1 <i < j,. will in
general miss this crucial n™"2-ball with positive probabil-
ity, no matter how fast j, T . More precisely, for any
sequence {j,}, there exists 8 and a sequence {a,}.
a, ®n""2, such that limP{]Y, - 6,]|>a, for some
i<j,}>0.

Search method (c): loca! stochastic secarch., A more




promising approach, which is justified by the result of
section 3, depends upon the fact that, if 6y is the ‘true’
parameter, then the miniinizing point of n“zl'i‘n - Tel
occurs within a neighborhood of diameter n~''2 about 9,
Thus search methods which stray outside such neighbor-
hoods waste time searching unimportant parts of ©. One
way to capitalize on this property is to suppose that there
exist estimates 8, = 0, (x,) of 8 € ©, with values in ©,
such that, whenever [0, — 65| < cn -2 , 8, € O

21) 0|8, - 0, is tight under Pq_

(We then call the estimators én “n'2 consistent’’). In

many nonparametric applications, such estimates are
known an examplc is given below. Next, let

=(x1,...,%x%), 1si<j, be j, independent
bootstrap samples of size n drawn from Pg; cf. Efron,
1979. Define a random search set ©, by

22 O, = (B(xp), 0, (x1). ..., B (x)

The search set (2 2) may be rcwrmen as 9, =
{6,(x,), 6 (x,,)+ Y2 L 8k + Y1
where the Y s i< J,,, are condmonally ud given x,;
here Y, = [6 (x *) - 8, (x,) 1n'2. In our applications, @
is typlcally not oper. Therefore, the structurally mmglcr
local  search ser  (8,(x,). 6,(x,)+ Y,;n V2
0, (xy) + Y;, n~'2}, where Y.Y, .. Y are iid, cannot
be used here since there is no guarantec that
6, + Y,n"2 ¢ ©. Such difficulties arise in both the loca-
tion and logistic models. On the other hand, this
approach can be made to work in classical parametric
problems, provided © is open; see also J.-P. Kreis, 1987,
for another interesting case (involving time series) where
such an iid local search is quite effective. Obviously,
when the structurally simpler search just mentioned can
be justified, it might be prefeired because of the greater
freedom in the method for simulating Y, ..., Y.
Example 2.1: Location model. What does the local sto-
chastic search amount to in this case? Here is one possi-
bility. Recall that here the parameter 8 is 0 = (n,F),
where T is the center of symmetry and F is the ‘‘sym-
metric’’ underlying distribution. An easy choice of esti-
mate 6, = (,F,), which satisfies the condition (2.1)
begins by taking f|, to be an oa-trimmed mean (co-
ordinatewise trimming will do). Next, let I:ln be the
empirical measure of the centered data

“fip. .. Xy~ iy, and let F, be the ‘‘symmetriza-
tion”’ of H,. What F, actually is depends on the exact
definition of symmetry, but in the two illustrations given
in Example 1.3, the definition of f:,, is intuitively clear.
For example, in the isotropic case, f:n puts the uniform
distribution of weight n™! on each of the spherical shells
(xe R%: |x|=|x;-N,). 1<isn). The stochastic
search set ©, then consists of bootstrap replicas of
8, = M, ). This choice of 8, il be a n™'2 consistent
estimator of 8 = (1, F) with values in ©.

(2.2). Stochastic norms. In this subsection we explain
some methods for replacing |-] in (1.1) by a computable
approximation ||, as in (1.6). Our procedure involves
the notion of a random norm, a concept that, it turns out,
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has had a long history in statistical methods. For a pro-
bability space X and a linear space B, a stochastic norm
] ), is a map from X x B to R! such that for each
x e X, b= |b|,(x) is a pseudo-norm on B. Here are
several examples of stochastic norms.

(2.2a). Kolmogorov distance.

Let x,=(x,...,x,) be iid real random variables
with continuous c.d.f. F, and empirical cdf F,. Let B
denote the space of bounded, real, right continuous func-
tion on R! with left limits. A stochastic norm | |, on B
is then given by [b|, = max{max[b(x~)| max[b(x‘-)l},

b e B. The Kolmogorov dlstancc between F F is then
given by the stochastic norm |F ~ F,|,.

(2.2b). Cramer von Mises discrepancy. Let
X =(X3, ..., %), F, F be as in subsection (2.2a). The
Cramer-von stes discrepancy is

[f[F, () - F())2dF (]2 For fixed F this defines the
L2(F) norm on (f"n - F). It is asymptotically equivalent
to [I[I:'n(t)—F(t)]zdf:n(t)]m, a stochastic norm | |,
on the difference f= - F. The stochastic norm | |, is
given by |f ln2 = jf (t)zdF (1); that is L2 (Fn) replaces the
norm of L2 (F).

(2.2c). Stochastic norms based on quadrants. For
te RY, let K(t) denote the lower left ‘‘quadrant’” with
cormer at ¢ KM ={ueR¥:y <, 1<icd), where
u = (Ug,.uy), t=Qy, ..., tg). Write P(t) for P{K (1)},
thus identifying P with an element of B = L_(R%). The
quadrant metric between two probabilities P, Q is then
sgplP(t) -QW|

There are several ways to replace the quadrant metric
with a more computable approximation.

(i) Lett=q(,, ..., 1) be a vector iid N(0,I) random
variables on R%. A simple stochastic norm{ |, on
L. (R% is then |bl, = mzz(lb(ti)l, belL_
18

(. Let xq,..., %, be iid, R%-valued, with empirical
measure f’n. Let C be the smallest cube in R? con-
taining the data points x, ..., X,. Pave C with
(pn)® cubes of equal size; let n; be the number of
data points in cube i; draw (n;/n)k, points uni-
formly from cube i. Then a stochastic norm on
L.(RY is given by the maximum of [b(t)|, be L,
over the points t just drawn. This data based sto-
chastic norm will more nearly approximate the L,
norm of P, — P than will the stochastic norm of (i)
above. On the other hand, it involves more compu-
tation.

(2.2d). Stochastic norms on half-spaces. Let P be a

probability on RY, and write P(s,1) = P(A (s, 1), for the

half-space A (s,t), as explained in (1.3), so that P is an
element of L. (S%xR'). Let s;,...,s, be iid, uni-

formly distributed on S¢, and t;, ..., t_ be iid N(0,1).

Then two possible stochastic norms on B = L.(S¢ x RY

are: max|b(s;, 1)}, and maxsup|b(s;,t)], b e B. If b is of
iske ik,

the form b = P, ~ P where P, is the empirical of n iid
observations from P, then the second of these two sto-

—————— ]




chastic norms is more data dependent and thus appears to
give a better approximation to the true norm. Data
dependent stochastic norms along the lines of the second
example under (2.2c) are also possible. Finding the
“‘best’’ data dependent stochastic norms for estimating
lf’n — P] for the half-space metric is currently an interest-
ing open problem. As regards simulation of si, ..., s
here, note that the following simple method works: simu-
late gy, . . ., g iid standard Gaussian rv’s on RY, and set
s; = &/1g;] where | g;| is the Euclidean norm of g;.

2.3. Stochastic functionals and a generic form of the
test statistics. Evaluation of the test statistic (1.1) often
entails, as the examples of section 1 make clear, evalua-
tion of quantities such as Pq(A) for various parameters 6
and certain sets A, such as half-spaces and quadranis. As
in the Fisher example (cf. sec 1.) such an evaluation may
not be easy. Thus, one wishes to replace Pg(A) by an
approximation P§™ (A), or more generally, the Ty in (1.1)
by an approximation T§. While the main result of sec-
tion 3 gives a very general approach to this approxima-
tion problem, the special examples listed in section 1
have, in fact, involved only two kinds of approximation.
First, for given 6, one may estimate Pg(A) by drawing h
iid. variables from Pg, obtaining an empirical mcasure
P(") which provides the estimate P (A) Such a method
has been used in the Fisher distribution problem described
in section 1 (cf. Beran and Millar, 1986). Of course, in
some cases it may be extremely difficult to carry out such
a simulation. In the location problem on RY, the relevant
probabilities Py(A) can be represenied as averages of
simple measures, over a certain Haar measure (which
depends on the notion of symmetry adopted). While such
an averaging is uncomputable, in general, replacing this
Haar measure by an appropriate empirical probability
yields an effective approximation. No doubt, in some
situations it may be also possible to replace Pg(A) by an
analytic approximation. While there are a great many
statistics of the form (1.1), (1.6) the paradigm case
underlying the specific examples of section 1 is

(23)  min max supn'? | (A(sp1) - PP (A (s, 1)

I<isj, Isjsk, ¢ !

where {s;}, A(s,t) are given in (2.2d), (61*] is a collec-
tion of j, bootstrap replicas of a preliminary n'2
consistent estimator of 8 (cf. search method (c)) and P§¥
is, for each O, the empirical of 1, iid. random variables
drawn from Pg. Notice that thls latter approximation
need be performed only for 6 = 9‘ , 1 51 <j, thus the
Monte Carlo for the approximating functionals P™ will
depend upon the outcome of the bootstrap samples which
determine the local search set for 8. As usual P, in (2.3)
is the empirical measure of the data and {Pg} is a possi-
bly nonparametric statistical model.

(2.4). Variable ©, vis a vis variable | [, The test
statistics suggested by (1.2) have the form ggn i Ag iy

where ©, is a variable subset of ® and | |, is a pseudo
norm depending also on n. Even if ©,7T® and
| ln— 1 | (this last denoting a norm), one cannot in
general hope for convergence of n;inlAeln. no matter
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how smooth Ag may be. The difficulty can often be
traced to the infinite dimensionality of ©: analogous
objects in the finite dimensional case typically converge
(Beran and Millar, 1988a).

Here is a simple illustration of the difficulty.
Example. Let B be the linear space of all real sequences
b = (b, b,,...) such that b, = 0 for all sufficiently large k.
For a,b e B define <a,b>=Zab. Let ¢ denote the
members of B with 1 on the i™ co-ordinate and 0 else-
where. Define lblk, =max |< b,e;>| and @L =

isk,

{eg, ..., €. Then min {68} =0j, >k, =1, k; 2 j;
13 eln
thus, without conditions on j, k, there can be no conver-
gence of min O, asn -~
68,
Despite the simplicity of this example, its basic moral
carries over: if convergence of min [Agl, is desired, then
e

the ‘‘size’’ of the search set O
sophisticated’’ for the norm | |,. Intuitively, one should
not ‘‘over fit’> the model relative to the measure of
discrepancy | |,. In particular, applications will often
therefore require conditions on the relative size of the
search set ®, and the sample size determining the sto-
chastic norm |

should not be ‘‘too

fne

2.5. Critical values. Critical values for test statistics
(1.6) can often be obtained by bootstrap method. There
are several valid ways to do this. A technique which
entails significant computational savings is a ‘‘conditional
bootstrap method’’, which for convenience we describe
only for the paradigm statistic (2.3).

First, fix the random variables {s;, 1 < j < k;) which
dctermme the stochastic norm; fix the random variables
65 1<is jn} which determine the local stochastic
search of ©, and fix the 51mulated esnmates PV. Next,
draw m, bootstrap samples u, Ve l_lmn. each of size n,
from the ritted model Pa.x,y here 8, is the same n'/2

consistent estimator used to generate the search set for ©.
It is assumed that the u are conditionaliy muependcm
(given x,) of the bootstrap samples used to construct Bl ,
and of the random variables used to construct P§M, and
independent of {s;}. Let P (u, ;+) denote the empirical
measure of u*, and let G, denote the empirical cdf of

min max supn'? [P (u A, D) - éw(A(ngt))l-
Isisjs 1sjsk,

1<l 5 My Then under suitable conditicns the quantiles
of G give asymptotically valid critical values for the
stochasnc test statistic (2.3). A proof can be based on the
asymptotic representation theorem in section 3, together
with techniques developed in Beran and Millar, 1987.
Other valid bootstrap methods could involve recalculating
either (or both) the search set (6 } or the {s;] for each
bootstrap sample g,*. <1< m, The added computa-
tional burden is enormous and up to first order asymptot-
ics, there is no gain over the ‘‘conditional’’ method.
Whether or not there is any compensating extra ‘‘stabil-
ity”’ in such methods is an interesting open question that
requires second order asymptotic analysis.




3. Asymptotic representation theorem.

This section establishes, under suitable hypotheses, the
asymptotic form of test statistics of the form (1.6). The
formulation is sufficiently general so that the result
applies to statistics based on sieves (cf. section 2), to the
stochastic statistics illustrated by (2.3), as well as to a
number of other possibilities. It can be used to show
under supplementary hypotheses that approximations like
(1.6) have an asymptotic form similar to that of (1.1).
The triangular array formulation makes the result a con-
venient tool in establishing the asymptotic validity of
bootstrap methods in the calculation of critical values (cf
subsection (2.5)). Motivation for the particular formula-
tion adopted here comes from the ‘‘paradigm’’ statistic
(2.3), the logistic testing problem (cf. section 1) which is
not of the form given in the paradigm, and the possibility
of extending sieve methods from an MLE framework to a
‘“‘minimum distance’’ framework.

Let X be a measure space, and X, = (X}, ..., Xp) &
vector of X valued random variables having joint distribu-
tion P,. Note that the general formulation does not
require that the x; be independent. Let © be a subset of a

normed linear space B, and let ©,, n = 1,2,... be subsets
of ©. The subsets O, are allowed to be random. For
each O € ©, let Ty be a functional defined on X (or on
the n-fold product of X) with values in a possibly
different normed space B,. Let T,=T,(x,) be a By
valued statistic on X".

Let ] |, be a (possibly random) pseudonorm on B,.
For each 9, n, let T§ be a B,-valued functional on ©. also
possibly random. In many applications T§ is an easily
computable approximation to Ty, based on Monte Carlo
simulations. The construction of @, | |,, T§ may
involve certain auxiliary randomization. Let Q, be the
probability governing the distribution of x, as well as
these constructions.

Fix 65 € ©. The hypotheses are as follows.
(3.1). Identifiability. For each € > 0, ¢ > 0 there exists
8 > 0 such that

limQu inf |TE- Tl > B) =

18-8p)>c

l1~¢

(3.2). Differentiability. There is a continuous linear
map I: span © — B, such that, for every € > 0, there
exists § such that

JEQ"llafgﬁsa {ITg ~ Tg, — 1(0 ~ 0p)1,/18 - 61)
88,
< g} = L
(3.3). Non-singularity.
110 -8, 2 C,18-0y) VOe O,

where C;;! is a tight sequence under Q,,.

(3.4). Consistency of T,:n"?|T, - To, In is tight under
Qn
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(3.5). Approximation property:
g{u&ng - Tgln'2 5 0

in Q, probability.
(3.6). Proximity of 6;:

ei:gnn”zﬁe—Teoh, = A, is Q, tight.

Condition (3.5) says that T§ approximates Tg in a
suitable fashion. In the case where T§ is an empirical
measure obtained by simulating iid observations from a
probability Pg = Ty, familiar exponential bounds on the
empirical process (cf, e.g., Alexander, 1984) quickly yield
simple conditions on the size of ©, vis a vis the number
of simulations used to construct T§. See Beran and Mil-
lar, 1988a for a simple illustration. If no approximation
T§ to Tg is needed, as in the case of certain problems
involving multivariate normal distributions, then of course
(3.5) is automatically satisfied. The proximity condition
(3.6) ensures that the point 6 is not far from 6,. If 6,
consists of bootstrap replicas of a preliminary estimate,
and if O, is the ‘true’ parameter, then (3.6) is automatic.
In case ©, is a sieve, (3.6) imposes conditions on the
speed with which ©, exhausts ®. The other conditions
are n-dependent variants of familiar conditions from the
theory of minimum distance estimators. Roughly speak-
ing, the effect of (3.1) is to ensure that the minimizing
6-points for (1.6) can be found eventually (as n — ) in
any given ‘“ball’’ about the ‘‘true’’ parameter; (3.2), (3.3)
ensure that said *‘ball’’ has a diameter of order nl’2. It is
considerations such as these that suggest the efficiency of
the local asymptotic search of © described in section 2.

Theorem 1. Assume (3.1) - (3.6). Let 6, be any
sequence such that n'2(8, - 8;) is norm bounded in B;.
Let W, = n"2{T, - Tg ]. Then under Q,

dnf o2 T - T§ = dnf | W, = 1(n'2(8 - )1,

+ an(l).

A novelty of this formulation is that T§, ©,, |-}, all
depend on n and can be random. Moreover, the parame-
ter set, ©, is not assumed open, unlike classical develop-
ments. Nevertheless, despite these novelties, the proof
can be accomplished by a somewhat complicated exten-
sion of the methods of Wolfowitz (1953), Pollard (1980),
Bolthausen (1977), Millar (1985) and others.

Remark. (a) The
replaced by:

identifiability condition can be

Q, [ 3 at least one 8 € O such that 18 = 6y[ >c} = 0

as n — 0. When ©, is a local stochastic search as in
Section 2, it is often quite easy to write down an analytic
condition for the above convergence.

(b) Differentiability may be replaced by the following
“asymptotic'’ differentiability condition, which will be
employed elsewhere. There exist constants K, K, such
that

|To - To, - 1(8 — 8g)ly < K;n?|8 - 6|
+ Kan® 10 - 8517 + 0,(18 - 8p)])




where § > 0 and ¢ < 1/2.

(c) The derivative 1| can depend on n, provided I,
replaces 1 everywhere in the complete theorem statement.

(d) In many applications W,, defined in the theorem

statement, converges to W, (n!2(8 - 6,): 8 € ©,) more

or less approximates span ©, and | |, —2| | as

n o, QOue therefore expects that the left side in

theorem 1 converges to inf (W ~ 1(8){, which is the
Bespan ©

classical form of the limit. In particular applications this
convergence can indeed be established; however, as the
example in subsection (2.4) makes clear, one cannot, in
the generality considered here, expect such convergence
to happen, without supplementary conditions which may
regulate the size of @, and the strength of | |,

Proof. Because of the approximation property (3.5), it
suffices to  analyse eienef 02T, - Teln Since

inf T, - Tel, 2 Jnf 1To = ol - (W, [0 "2,

08, € O
16 ~ 8o)>c 16 - Bl>¢
hypothcsesA (4.1 (44) show that, for any c,

ei(ng ! | T, — Tg| remains boended away from 0 in pro-
18 - 6pl>c .
bability. On the other hand, T, - Tegln — 0; this,
together with (3.6) shows that ei(n(t;n |T, ~Tgl, 2 0
16 — 9, Lsc

and so ing 1T, - Tola =6i‘n8fn {T, — Tel, for any

]6~(901nsc
preselected ¢ > 0.
Next let d, = (max{A,,b))[|W,l,v11C;' where
A, C, come from (3.6), (3.3). Then {d,} is tight.

Without loss of generality, assume c, < %(|||||+ nL.
Let N, be the set of 6¢8;, such that
ITo— Ty, ~ 18 -0p)1 < 1/12C, [8 - 6y]. By (3.2), (3.3)

and (3.6), N, is nonempty, and by (3.3), the preceding
paragraph, and an elementary argument ei(rg IT, - Tel, =

dnf | T, - Tel, On the other hand, if 8 ¢ Ny, | T, ~ Tol,

2 (10 - 8g) [, — 1 T — Tg,ln - 1/12C, 16 - 8]
> 1/2C, 10 - 89| -n"2|W,|,. Since N, (8¢ ©,:
n'2 10 - 8,| < d,}, which is nonempty by (3.6) and the
definition of d,, the calculation in the preceding sentence
implies

inf n¥2 [T, - Tg|, = inf T - Tyin'?
6N, | n eln 08, l n 6i
n'?]8-8,) s d,
= inf W, -1 ~0)n"3). + op (1).
a8, | n n) )ln (O
n'?(0 - Bg|sd,

Next, note that, with Q, probability approaching 1,
inf  |W, - 1®-08pn'? < (W) + Dd,

|6—90|sdn,.n ke
On the other hand, by definition of d, if |18 - 8,) > d,,
then, since C, < 1/4(|H)j + D)7

IW, ~1(n'"2(@ - )1, 2 [1(n'2(0 -8y ~ [W,|

67

z c;ldy~d,
2 AN+ 1Ddg - dy = 3311+ Dd,

50 that inf (W, ~1(n'2(8 - 6N,

8¢ O,
18-8¢|sd,
= inf |W, - 1(n"2(8 - 8p) |, q.e.d.
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BOOTSTRAP INFERENCE FOR REPLICATED EXPERIMENTS

Walter Liggett, National Bureau of Standards, Gaithersburg, MD 20899

ABSTRACT

Inference methods valid for nonnormal error are
proposed for experiments in which each design
point is replicated three or more times.
Differences between the replicates provide the
data needed for a pooled estimate of the error
density, and this density forms the basis for the
bootstrap. The density estimator is specified for
symmetric error in Liggett (Biometrika, 1988), and
this symmetric estimator has been generalized to
asymmetric error. In this paper, the application
of this density estimator to designed experiments
is considered. The lack-of-fit test is of
particular interest. The extension of the density
estimator to data requiring a blocking variable
and to data with dispersion effects is discussed.
The bootstrap based on this density estimator is
shown to be valid for smaller sample sizes when
the test statistics are robust. Estimation of the
error density is illustrated with measurements
replicated at different laboratories.

1. INTRODUCTION

In industrial experimentation, when the error
properties are crucial to the inferences drawn,
the possibility of nonnormal experimental error
must be considered. One source of variability
that is potentially nonnormal is the inhomogeneity
of physical samples of bulk materials. For
example, trace concentrations of a particulate
substance in portions of a bulk material are
usually nonnormal. Another potentially nonnormal
source is material degradation that accelerates as
it proceeds. Many corrosion processes have this
property as does spoilage due to bacterial growth.
Othei potentially nonnormal sources are inherent
in measurement procedures. Examples include loss
of analyte during preparation of the physical
sample, interfering peaks in spectra and
chromatograms, aberrant results from the software
that automatically locates peaks and measures
their height or area, and inconsistent control of
variation due to poor understanding of the
sensitivities of the measurement procedure. This
paper discusses a bootstrap method for obtaining
valid inferences when the experimental error is
nonnormal.

An approach to bootstrap inferences for
replicated experiments is provided by the pooled
error density estimator given by Liggett (1988,
1989). This estimator is based on the assumption
that replicate measurements involve independent
and identically-distributed realizations of the
measurement error, the usual assumption in
designed experiments. This assumption leads to a
relationship between the error density and the
densities of the first and second differences
between error realizations. These latter
densities can be estimated from differences
between replicates. The computation of the error
density is a fitting by weighted, nonlinear least
squares.

Bootstrap inferences in regression can be based
on other density estimators (Efron, 1982; Efron
and Tibshirani, 1986). When each design point is
replicated three or more times, a separate density
estimate for each design point is an alternative
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to a pooled density estimate. In this case, each
bootstrap repetition is obtained by separately
sampling with replacement the measurements at each
design point (Efron, 1982). When the number of
replicates at each design point is small, this
approach suffers from the discrepancies between
the small-sample empirical distributions and the
true error distributions. If a pooled density
estimator can be justilied, other pooled
estimators might be chosen in place of the
replicate-differences density estimator in Liggett
(1988, 1989). A model of the true values at the
design points can be fit to the data, and the
residuals can be computed and combined to form a
density estimate. These residuals might be
obtained from separate location estimates for each
design point or from a more restrictive model of
the regression function, When the number of
replicates is small, the location estimates for
the design points are unstable, and the naive
combination of residuals does not provide a
completely adequate density estimate. The
combination of residuals from a more restrictive
regression model leads to an error density that
depends on the design matrix. Accounting for this
dependence in a lack-of-fit test seems difficult.
The replicate-differences density estimator does
not suffer from these problems and thus seems
attractive.

Because of the possibility of nonnormal error,
robust statistics are the proper choice for the
desired inferences (Hampel, et al., 1986). The
use of the bootstrap to find the distribution of
robust statistics is the focus of our discussion.
Thus, our interest is in robustness of validity
for statistics with good robustness of efficiency.
Hampel, et al. (1986) offer robust tests for
linear models based on the asymptotic distribution
of the test statistics. We propose to use the
same test statistics but to replace the asymptotic
distribution with the bouotstrap.

Designs with three or more replicates at each
design point have recently been recommended for
applications in which dispersion effects are
potentially important (Box, 1988 and the
discussion). These designs are also appropriate
for the density estimates given in Liggett (1988,
1989). The recommendation of designs with three
or more replicates at each design point is a
considerable change from the usual recommendation.
For example, the number of replicates recommended
for lack-of-fit tests may be as small as 5, a
number too small for investigation of either
dispersion effects or nonnormality. When the
experimental error is dominated by a single error
source, the error is often both nonnormal and has
a variance that depends on the controllable
factors in the experiment. Thus, dispersion
effects must be considered when nonnormality is
important, and conversely, nonnormality must be
considered when dispersion effects are important.
The inclusion of both nonnormality and dispersion
effects in the analysis is often needed.

In this paper, three aspects of the application
of the replicate-differences density estimator to
designed experiments are considered. The first,
which is discussed in Section 2, is the extension




of the density estimation method to the case in
which the replicates of the experiment require a
blocking variable and to the case in which

dispersion effects are present. The secund, which
we discuss in section 3, is the effect of the
choice of test statistic and experimental design
on the validity of the bootstrap when the sample
sizes are moderate. The third, which we discuss
in Section 4, is the performance of the density
estimator on a set of measurements with a variety
of real-world imperfections.

2. DENSITY ESTIMATION

The model on which this paper is based differs
from the usual model for designed experiments only
in the omission of the assumption of normality.
The jth replicate measurement at the kth design
peoint is given by
Yik = kae + €5k (G =1,. ., k= 1,...,K) (1)
where ka is the row of the design matrix
corresponding to the kth design point, 6 is the
vector of unknown parameters, e;, is the zero
mean, independent and idenricn'iy~distributed
error, rp is the number of replicates at the kth
design point, and K is the number of design
points.

As specified in Liggett (1988, 1989), the
replicate-differences estimator of the density of
€;x is based on the Hermite function expansion
(gchwartz, 1967). Note that this orthogonal
function expansion is different from the Edgeworth
expansion. The Hermite functions can be defined
by the recursion

og(x) = 176 e p(-x2/2)
w?(x) = 2% w‘% x exp(-x2/2) L (2)
wq(x) = (2/q)% x wq_l(x) - {{q - 1)/q}2 wq_z(X)-

To apply the Hermite function expansion to the
measurements, we use a scale factor computed from
the median of the absolute differences between
replicate measurements

sy = (0.6745)71 (2)°% median|y - yjukl
(18j<j'¢rg, k =1,...,K). (3)
Division by 0.6745 and J2 makes s, an unbiased
estimate of the error standard deviation in the
normal case. We estimate the error density by
fitting the functional form for the density given

by

Q
B(x) = (Usp) T ag oqilx + a)/s,), (4)

q=0

where the parameter a is chosen so that the mean
of p is zero. If the error density is assumed to
be symmetric as in Liggett (1988), then a = 0 and
only Hermite functions of even order are needed in
the expansion.

The error density is estimated through its
relation to the densities of the first and second
differences between replicate measurements at the
same design point. The estimates of these
densities on which the fitting is based are given
by
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Q
pa(x) = (J2s,.)71 2 dyq 024 (x/(J25,)}, (5)
q:
. K %2
dy, = { T (rp-1)}71 & =—
CAR SR k=1 Tk
*x T L oopq{lygy - Yj'k)/(JZSr)}, (6)
>3
. 30
Pe(x) = (Jos,)7! EO Sq 0qix/(J6s.)}, (7)
q=
) K X
={Z (-l g —m— —
“a (k=1(rk ? k=1 Tk{rg-2)
xg TE wq{(2yhk T Yik yj'k)/(J6sr))‘ (8)
h j>j'
is3'#h

Equations (6) and (8) show explicitly how the
replicate differences enter the error density
estimation. As specified in Liggett (1988, 1989),
the fitting is accomplished by a weighted
nonlinear least squares algorithm. Approaches to
avoiding negative values of the density estimate
are presented in Liggett (1989).

Estimated Quantiles

|2. [
| |
") .

T T T T T T T

-3 Norwal Quantiles 3
Figure 1. Error density estimated from Quinlan's
cable-shrinkage experiment (Box, 1988).

An experiment with 4 replicates at each of 16
design points was performed by Quinlan (Box,
1988). Quinlan included many replicates to
facilitate the analysis of dispersion effects.
The reanalysis of Quinlan's data by Box and the
discussants of Box's paper (Box, 1988) show that
the dispersion effects are not particularly
strong. Ignoring the dispersion effects, we can
obtain an error density estimate from Quinlan's
data. This estimate is interesting despite the
violation of the assumption of identically-
distributed error that underlies the replicate-




differences density estimate.
error density estimate based on the assumption of

Figure 1 shows the

symmetry. Figure | is a quantile-quantile plot of
the estimated error density versus the normal
density. We see that the center of the estimated
density looks very much like the normal, but that
the tails of the estimated density are somewhat
thicker than the normal.

The tails of the error in Quinlan's data can be
investigated further by means of a half-normal
probability plot of the absolute differences
between replicate measurements. This probability
plot, which is shown in Figure 2, does not appear
to be perfectly straight. Rather, this figure
suggests, as does Figure 1, that the density of
the absolute differences has a tail somewhat
thicker than the normal.

@ahhbﬁhnmg
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Figure 2. Replicate differences from Quinlan's
cable-shrinkage cxperiment (Box, 1938).

The existence of dispersion effects is a
reasonable explanation for the thick tails
apparent in Figures 1 and 2 since dispersion
effects give a set of error realizations that
appear to arise from normal scale mixtuic if the
dependence on the experimental factors is ignored.
Thus, Figures 1 and 2 do not provide any important
clarification of Quinlan's data. Consideration of
Mninlan's data in this paper is intended to link
replicate-differences density estimation with the
designs adopted for the analysis of dispersion.
This link raises the question of how both analyses
can be combined.

Box (1988) mentions that Quinlan's experiment
was run in the "split-plot' mode and that the
experiment may involve two error components only
one of which is reflected in the replicates. One
way to mitigate this problem is to measure all the
design points once, then measure all the design
points a second time, and continue to repeat this
as many times as necessary. [If this procedure
were to be followed, then we would likely have to
include a blocking variable, that is, to replace
€: in (1) with 65 + £33 to obtain an adequate
model of the measurements. To estimate the error
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density, we would first have to estimate the
values of &:. Various ways to estimate the §.
suggest themselves. In the present context,
estimation of the &§; by maximizing dg seems
interesting since t%is method can be thought of as
choosing the &§;: to make the error look as normal
as possible. ifferentiation of ao shows that the
resulting estimate of &: is an M-estimate with
redescending y function’

The most general way to combine nonnormality
and dispersion effects in an error model is to
allow the error density to depend in some unknown
way on the controllable factors. Such a model
would limit the pooling that could be done in the
estimation of the error densities and would thus
require a very large number of replicate
measurements. One way to limit the number of
measurements required is to assume that the
dispersion effects only involve the scale of the
error so that after the replicate-differences have
been corrected for the scale effects, the error
density can be estimated by pooling all the
corrected differences. Let the error term in (1)
be given by opeiy, where the dependence of ap on
k, the design point, can be modeled by a function
with fewer unknown parameters than K, the number
of design points. We propose to estimate o} and
then correct the replicate-differences using this
estimate. The estimators of dispersion effects
suggested by Box and the discussants (Box, 1988)
may be appropriate. A robust estimator for the
dispersion effects might be better.

3. BOOTSTRAP INFERENCE

Bootstrap inference consists of finding the
distribution of a statistic by computing
realizations of the statistic from independent
samples drawn from an estimated density. In this
paper, we focus on statistics for testing lack of
fit, which is an important inference in designed
experiments. Other important inferences in
designed experiments involve confidence intervals
for the differences between points on the response
surface ana confidence intervais for the values of
o, The validity of bootstrap inference depends on
both the accuracy of the density estimate and on
the characteristics of the statistic, which in
turn, depend on the experimental design. In this
section, we consider how the choice of design and
statistic affect the validity of bootstrap
inference based on the replicate-differences
density estimate.

The percentiles of the replicate-differences
density estimate have larger bias and larger
standard deviation in the tails than at the center
of the distribution. This suggests that this
density estimate will provide accurate percentiles
for a location estimate robust against stretched-
tail error even when the percentiles of the
density estimate itself seem inaccurate. This
principle can be illustrated with the median of
three. If the error density and error
distribution are given by p(x) and F(x),
respectively, then the density of the median of
three independent error realizations is given by
6F(1-F)p. The factaor 6F(1-F) downweights the
tails of p.

To provide some specific insight into the
validity of the bootstrap based on the replicate-
differences density estimate, we consider an
example in which the sample size is small for the




purpose of density estimation and the error

distribution is quite asymmetric. We consider 3
replicates at each of 20 design points and error
distributed as x¢ with 3 degrees of freedom. In
the Hermite function expansion of the error
density (4), we let Q = 10. The mean and standard
deviation of the percentiles obtained in 100
trials are

Error Density Median of Three

Prob. True* Mean Std Dev True* Mean Std Dev
0.01 -2.89 -3.81 1.02 -2.60 -3.02 0.55
0.05 -2.65 =-3.12 0.57 -2.26 -2.38 0.47
0.10 -2.42 -2.65 0.50 -2.01 -2.00 0.46
0.25 ~1.79 -1.71 0.46 -1.46 -1.33 0.44
0.50 ~0.63 -0.45 0.35 -0.63 -0.45 0.35
0.75 1.11 1.17 0.37 0.46 0.62 0.30
0.90 3.25 3.1€ 0.83 1.69 1.67 0.49
0.95 4.81 4,75 1.25 2.56 2.48 0.71
0.99 8.34 6.56 1.84 4.45 4.43 1.19
*The mean of the x2 with 3 df is subtracted.

Dividing the standard deviations by 10 to obtain
standard errors of the means, we see that the
density estimates are biased near the center and
in the tails. In the tails, both the bias and the
standard deviation are smaller for the median of
three than for a single error realization. Thus,
the replicate-differences density estimate clearly
provides more accurate results for the median of
three. These trials suggest that even for the
median of 3, the design, 3 replicates at 20 design
points, and the error density, x2 with 3 degrees
of freedom, may not lead to an adequately stable
density estimate. In an application of the
replicate-differences density estimate, the eftect
of the stability of the density estimate on the
desired inferenccec should be investigated by Monte
Carlo experiment.

To test lack of fit, we specialize the 1-tests
discussed by Hampel, et al. (1986). A lack-of-fit
test is a comparison of the fit of the model of
interest with the fit of the most general model
that can be estimated, namely, a location estimate
for each design point based on just the
measurements ai chat design point. Let up, uy,

be variables that specify the factor levels in
the experimental design, and let x'6 be a K-term
polynomial in these factors, x' = (1, up, Uy, ups,
uyuy, ...). We can choose such a polynomial with
the property that 21l the elements of 8 car he
estimated and the property that the model we wish
to test is given by setting 8, = 0 for elements in
x not in the model. Let x, be the value of x at
the design point k. Hampel, et al. (1986, p. 346)
offer a test based on

K
r(e) =

k

(9)

[ e B
e~

(%, (yjk - kaG)/c),
I j=1

where the function 1 is chosen based on the
desired robustness properties and ¢ is a scale
parameter that must be estimated. Our notation
differs from that in Hampel, et al. (1986) in
obvious ways. Hampel, et al. (1986) propose the
statistic
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21
Sn2 = e [mine(r(8)|6m=0 terms not in model}

- ming{r(8)}], (10)
total number of measurements,
of terms in the model to be
tested. Hampel, et al. (1986) give the asymptotic
distribution of Sn2 and propose that tests be
carried out on the basis of this distribution. As
an alternative, we propose to use bootstrap
samples from the replicate-differences density
estimate to determine whether an observed value of
S.4 is statistically significant. Work is needed
to determine the situations under which this
proposal has major advantages.

Consider the major issues involved in the
choice of the function 1. For lack-of-fit tests
derived from t-tests, the issue of bounded
influence does not arise and thus, the choice of 1
is simplified. For lack-of-fit tests, the
minimization of '(8) under the full model is
simply fitting a separate location estimate to
each design point. Thus, no design point has
higher influence than any other and no choice of 1t
provides dependence on the design point. Since neo
design point is downweighted, a single design
point might cause rejection of the fit of the
model. This behavior is what is usually expected
of lack-of-fit tests.

Another issue is whether to choose a 1 with a
redescending ¢ function. On one hand, a
redescending ¢ function provides superior
performance when severe outliers are present. On
the other hand, with a redescending ¥ function,
the minimum of I'(8) under the model might be such
that a design point is completely ignored in both
the estimate of 8 under the model and_the value of
r(e) that appears in the statistic Snz. Thus, the
test might lead to acceptance of the fit of the
model even though all the replicates at one design
point have very large residuals. Belief that all
the measurements at one design point can be
rejected as outliers dues not seem reasonable.

One way out of this dilemma is to estimate 8 using
a 1 that has a redescending ¢ function but to
avoid a redescending ¢ function in the I'(8) chosen
for the statistic §,°. In other words, in testing
lack of fit, the 1-test, which is based on the
same t for estimation and testing, might be
generalized to different t functions for
estimation and testing.

The validity ~f a bootstrap haced on the
replicate-differences density estimate also
depends on the choice of 1. As we have already
noted, the choice of a robust test is important
for validity. Moreover, whether the ¢ function is
redescending may be uave an effect on validity.
Roughly speaking, in the case of stretched-tail
error, the replicate-differences density estimate
tends to have shorter tails than the true density
estimate. Thus, for a redescending ¥ function,
the bootstrap samples may have fewer observations
that have no influence than samples from the true
distribution would have. For a non-redescending ¢
funciion such as Huber's, the location of outliers
beyond a certain point makes no difference,.

The design of the experiment also has a bearing
on validity. For some designs, the evidence for
lack of fit comes from only one design point. An
example is a centerpoint that has been added to a

where n = % Ty the
and h is the number




two-level factorial design. This is the case in
which an analysi- .t the experiment based on
normality mav .~ be saved by the central limit
theorem. This is also the case in which validity
depends i, .ne percentiles of the distribution of
the location estimate for a single design point.
For other designs, the evidence of lack of fit is
spread over many design points. In this case, the
bootstrap should be valid over a broader range of
error distributions and sample sizes.

4. APPLICATION

In this section, we consider a set of kinematic
viscosity measurements made on re-refined oil.

The set of measurements consists of 3 measurements
on each of 65 samples of re-refined oil (Weeks, et
al, 1983). The measurements are of the kinematic
viscosity at 100 °C. In this application, the
actual variability of the samples, which is of
interest, must be distinguished from the
measurement error, which is not normally
distributed. Each oil sample was measured by
three different laboratories. However, since the
same standard measurement method was used by each
laboratory and since the interlaboratory bias was
corrected on the basis of reference sample
measurements, the model given by (1) is plausible.
The non-normality of the measurement error is
manifested in two ways. In the set, 5
measurements differ markedly from the
corresponding measurements by the other two
laboratories. Even without these outliers, a
half-normal probability plot of the differences
between measurements on the same sampie shows
evidence of an error density that has a longer
tail than the normal. Consider a statistic for
comparison of the variability of oil samoles from
various sources. An appropriate statistic might
be computed from the medians of the three
measurements on each oil sample. The contribution
of the measurement error to this statistic can be
assessed by means of a bootstrap based on the
error density estimate.

An estimate of the error density of the
kinematic viscosity measurements was computed.
Before considering this estimate itself, we
consider two diagnostic quantile-quantile plots, a
plot of the empirical distribution of the absolute
differences between replicates on the same oil
sample versus the distribution of these
differences obtained from the estimated density,
and a plot of the empirical distribution of the
second differences versus their distribution as
obtained from the estimated density. The plot of
the absolute differences in Figure 3 shows that
the estimated density fits the data well except
for the 10 differences that involve the 5
outliers. Similarly, the plot of the second
differences in Figure 4 shows that the estimated
density fits the data well except for the 15
second differences that involve the 5 outliers,
four of which are high, and one low. Clearly, the
cstimated density does not account for the extreme
values of the differences. Thkrce figures contain
a warning about the interpretation of the
estimated density. Also, these figures suggest
that a better error density estimate might be
obtained by increasing Q so that the error density
estimate can better represent the tails.
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Figure 3. First differences between replicate

kinematic viscosity measurements, empirical versus
estimated distribution.

Second Difference
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Figure 4. Second differences between replicate

kinematic viscosity measurements, empitrical versus
estimated distribution.

Figure 5 shows a quantile-quantile plot of the
estimated distribution versus the normai
distribution. The error density appears to be
negat ively skewed, but this conclusion must be
tempered by the results in Figures 3 and 4. One
way to check the cffect of the outliers is to
remove {hem from the data set and re-estimate the
error density. The result ef this is shown in
Figure 6. Both Figures 5 and 6 show the same
basic shape for the error densitv, a negative
skewness. Thus, we conclude that owr error
density estimator largelyv ignored the 5 outliers.




This behavior can be explained by the factor
exp(-x</2) in the Hermite functions that appear in
(6) and (8). These viscosity measurements suggest
the appropriateness of our error density estimator
for bootstrap inference for robust estimates.

Estimated Quantiles

=T T T T T
-3 Normal Quantiles J
Figure 5. Error density estimated from kinematic

viscosity measurements.

Estinated Quantiles
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Figure 6. Error density estimated from kinematic

viscosity measurements remaining after outlier
removal.
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REGRESSION STRATEGIES

*
David Brownstone , University of California, *.vine

INTRODUCTION

Almost all statistics and econometrics texts contain
strong admonitions against sequential estimation (or
"data mining"). These admonitions are as effective as
those against teen-age sex and drug abuse. Applied
econometricians ignore the textbook warnings and use
sequential strategies because they believe that they
yield better estimates. In spite of considerable efforts,
theoretical statisticians have been unable to analyze the
sampling properties of these strategies under realistic
conditions (see Judge and Bock (1978) and Judge
(1984))1. This study solves this problem by using the
bootstrap (see Efron(1982) and Efron and Gong(1982))
to compute the sampling distribution of different
estimation strategies.

This paper examines the sampling properties of
simple multiple regression estimation strategies based
on variable and outlier deletion. With only small
deviations from a model with orthogonal regressors and
normally distributed errors there are substantial biases
in the standard errors and t-statistics reported at the
last stage of these simple strategies. Since the bootstrap
is only asymptotically valid, the results presented here
are based on Monte Carlo repetitions from known error
distributions to eliminate the confounding effects of
possible small sample biases. However, for all of the
designs considered in this paper, the small sample biases
in the nonparametric bootstrap are negligible. The key
conclusion of this work is the necessity of completely
specifying the estimation strategy and then
bootstrapping it to get consistent estimates of the
sampling distribution.

The bootstrap technique works by generating
artificial data samples and computing the estimator for
each sample. This technique “1s been used to derive
small sample properties of estimators for autoregressive
linear models by Freedman and Peters (1984) and for
Nested Logit models by Brownstone and Small(1988).
Independently, and more recently, Kipnis (1987) and
Veall(1987) have used the bootstrap to examine the
effects linear

of various estimation strategies in
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regression models. Kipnis looks at the strategy of
choosing the subset of variables to maximize RZina
model with orthogonal regressors, but he does not
report  the individual coefficient
Veall considers these properties for a

properties of
estimators.
stepwise regression strategy applied to an empirical
example. Although his results are qualitatively similar
to those in this study, it is impossible to disentangle the
effects of possible model misspecification from the biases
caused by the estimation strategy.

Since most applied econometricians use some
sequential estimation strategy but only report the
biased t-statistics and standard errors from the last
stage, this study concentrates on examining the size of
these biases for a number of known models. The design
of the experiments concentrates on isolating the effects
of multicollinearity among the regressors. The biases
reported here are caused solely by the use of sequential
estimation strategies. This study is not designed to
explore exactly when the biases will be large, but rather
to show how pervasive large biases are and suggest a
methodology for removing them. In particular, there are
always large negative biases in the standard errors
estimated from the last round of even simple sequential
procedures. With moderate collinearity, these biases are
frequently greater than 100 per cent.

Although it would be interesting to further isolate
the causes of the biases from sequential estimation,
there is clearly large potential gain from designing
better estimation strategies. The bootstrap methods
described in this study could then be used to generate
consistent estimates of the sampling distribution of
these strategies.

EXPERIMENTAL DESIGN

The experiments are designed {0 investigate the
sampling properties of two estimation strategies,
Ordinary Least Squares (OLS) and Sequential OLS,
with and without deletion of outliers and influential
observations. The Sequential OLS (abbreviated by
SEQ) procedure used in this study consists of first




estimating the full model by OLS, deleting all variables
(except the first two) with absolute T-statistics less
than 2, and finally estimating the restricted model by
OLS. The T-statistics for this procedure are calculated
from the usual OLS formulas at the second stage.

There are 7 regressors and 100 observations in each
data set. The regressors and true parameter values are
initially generated as independent draws from a unit
Normal distribution. Each set of independent regressors
is then transformed into 5 increasingly collinear data
sets. The most collinear data had condition numbers? of
approximately 135. These data are examples of strongly
collinear data, but such data are quite commonly
encountered in applied econometric work. The highest
bivariate correlation between any two regressors in any
of the experiments is 0.9.

For each of the four experiments, 100 independent
draws of the regressors and true parameters were made.
For each of these draws, and each of the 5 collinear data
sets based on them, 300 independent "dependent
variables" were generated according to

Y=X8+c¢,

where X and § are fixed, and the ¢ are independent unit
Normal two of the
experiments, independent unit Normal contaminated
with 10%
distribution with mean 0 and variance 1003.

random variables or, for

draws Normal
The
sampling distribution of each of the estimation

independent from a

strategies is then estimated from the sample of
estimates over the 300 bootstrap repetitions4. All of the
results presented in this study pertain to the estimation
of the coefficient of the second of the two variables
which were always kept in the regressions.

Each experiment considers the SEQ and OLS
estimation strategies for 100 independent draws of the
true parameter values and 6 increasingly collinear
regressor matrices. In two of the experiments, outliers
and influential observations were deleted before the
estimation strategies were calculated. Outliers are those
observations with standardized residuals® greater than 2
Influential observations are those with "hat" values
greater than 0.14. These measures, and choice of cutoff
values, are fully described in Belsley, Kuh, and Welsch
(1980).
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The four experiments used in this study are chosen
to investigate commonly used variable and outlier
deletion strategies across a wide range of realistic model
settings. The experiments are:

RUN1:
compared where

OLS and Sequential OLS
the dependent
uncontaminated (e.g. the es are all draws from a
unit Normal distribution).

(SEQ) are
variable is

RUN2: OLS and SEQ are compared where the
dependent variable is contaminated (e.g. 10% of the
es are drawn from a Normal distribution with
variance equal 100).

RUN3: After first removing outliers and influential
observations, SEQ and OLS are compared where the
dependent variable is uncontaminated.

RUN4: After first removing outliers and influent.al
observations, SEQ and OLS are compared where the
dependent variable is contaminated.

100 different basic models (initial X matrix and
values) are used for each experiment since there is no a
prior: reason to expect convergence to anything over
these repetitions. The purpose of these repetitions is to
investigate the behavior of the estimation strategies
across different models and to insure that the results are
not artifacts of some peculiar X or # values. Finally,
since the matrices for transforming the basic
independent X matrices into collinear regressors were
fixed across all of the runs, the repetitions also induce
small variations in collinearity around the experimental

design values.

RESULTS

The results of the four experimental runs are
presented as percentiles across the 100 basic data
repetitions in Tables 1 — 4 . The numeric suffixes on the
row labels refer to the degree of collinearity in the X
matrix. The suffix 1 refers to the basic independent
data set, and higher suffixes correspond to the

increasingly collinear transforms of these data. The rows




TABLE 1: RUN1 RESULTS
Uncontaminated Errors, No OQutlier Deletion

Percentiles 5 25 50 75 95
COND1 1.36 1.46 1.52 1.58 1.66
EFF1 —4.16 -1.26 -0.19 0.01 1.15
BIOLS1 -5.57 -1.62 1.80 3.84 6.56
BISEQ1 —4.69 -0.39 2.14 4.39 7.61
COND2 5.16 6.27 6.72 7.25 8.11
EFF2 4496 -1656 —6.31 —0.69 5.45
BIOLS2 -5.76 -1.41 1.04 3.49 6.34
BISEQ2 -3.30 2.86 6.44 15.03 33.20
COND3 10.34 12.66 13.65 14.85 17.00
EFF3 —69.69 -39.66 -20.66 —5.02 12.65
BIOLS3 599 -1.81 1.45 3.63 7.69
BISEQ3 -2.12 9.30 23.45 38.09 72.92
COND4 29.35 36.79  40.72 44.29  51.00
EFF4 -120.04 -66.68 -30.98 21.96 89.89
BIOLS4 -7.20 -1.17 0.77 3.76 8.13
BISEQ4 5.26 38.09 63.30 86.85 117.39
COND5 58.17 73.31 81.51 88.15 102.25
EFF5 -132.83 -66.24 7.60 60.75 111.65
BIOLS5 -7.29 -2.36 0.28 2.73 6.37
BISEQS5 11.37 32.72 63.39 96.11 128.30
CONDS6 96.78 121.72 135.88 146.74 170.45
EFF6 -125.98 —41.93 27.43 75.78 137.30
BIOLS6 -~5.38 -1.79 0.25 3.18 7.54
BISEQ6 11.59 29.46 59.25 94.29 141.82

labelled "COND" give the condition number for the X
matrices.

The other three rows in each group give the
properties of the estimated second regressor coefficient
(recall that the first two regressors were always
included). The row labelled "EFF" gives the percentage
improvement in the mean square estimation (MSE)
error of SEQ versus OLS: positive values imply that
SEQ is a better estimator. Note that the MSE here is
measured relative to the true parameter value used to
generate the dependent variables.

The remaining two rows (prefixes BIOLS and
BISEQ) in the Tables give the percentage bias in the
T-statistics for the two estimation strategies. These
biases are computed by comparing the average of the
standard OLS T-statistics from the last stage regression
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TABLE 2: RUN2 RESULTS
Contaminated Errors, No Outlier Deletion

Percentiles § 25 50 75 95
COND1 1.39 1.48 1.53 1.61 1.67
EFF1 -835 -392 -235 —0.03 3.74
BIOLS1 4.22 8.22 10.92 14.01 19.10
BISEQ1 4.44 9.21 12.09 14.31 19.33
COND2 4.60 6.19 6.91 741 8.29
EFF2 -52.82 -28.19 -13.30 -2.16 22.15
BIOLS2 -0.08 4.83 8.23 12.11 17.77
BISEQ2 5.75 15.39 24.05 35.97 51.11
COND3 9.15 12.46 14.17 15.19 17.17
EFF3 —80.17 -29.88 1.44 23.25 64.68
BIOLS3 -2.42 5.13 9.57 12.99 17.25
BISEQ3 1496 2753 38.16 51.54 66.36
COND4 27.48 37.45 41.24 45.59 52.45
EFF4 -57.50 2480 57.65 96.01 134.18
BIOLS4 —0.31 5.79 9.00 13.25 19.81
BISEQ4 13.37 2422 41.12 60.09 109.46
COND5 54.10 74.58 82.41 91.83 105.18
EFF5 —65.79 50.05 89.00 121.69 148.44
BIOLS5 -2.89 6.20 1044  13.22 18.97
BISEQ5 834 23.00 3697 59.85 120.41
CONDS§ 89.81 124.32 137.34 153.21 175.36
EFF6 -43.33 56.68 95.34 128.77 151.01
BIOLS6 -0.28 6.01 9.75 13.25  20.23
BISEQ6 14.80 2282 3861 60.75 10846

over the 300 bootstrap repetitions with:

Ebi

J 5(b,B)?

T=

where bi denotes the estimate of the second element of 8

at the ith bootstrap repetition and b is the sample mean
of the bi' Since Tables 14 are based on a Monte Carlo

study with the error vectors drawn from their known
true distributions, T converges to the true T-statistic as
the number of bootstrap repetitions gets large.

If the error vectors are drawn from the empirical
distribution of the residuals from a regression using all
of the regressors, the resulting b would be Efron’s




TABLE 3: RUN3 RESULTS
Uncontaminated Errors With Outlier Deletion

Percentiles & 25 50 75 95
COND1 1.36 1.46 1.52 1.59 1.70
EFF1 -4.49 -1.30 -0.28 0.01 1.10
BIOLS1 12.41 17.07 20.83 23.80 29.18
BISEQ1 13.49 17.57 21.54 24.51 29.77
COND2 5.00 6.18 6.92 7.51 8.44
EFF2 -3437 -1722 416 -0.72 3.29
BIOLS2 12.71 17.23 19.60 23.15 26.02
BISEQ2 12.52 21.60 25.78  34.27 47.85
COND3 9.98 12.65 14.09 15.48 17.29
EFF3 -62.82 -31.62 -13.52 -3.43 23.82
BIOLS3 13.71 16.80 21.26 24 .35 27.51
BISEQ3 17.54 26.95 41.97 56.69 103.73
COND4  28.38 37.05 41.91 46.80 52.97
EFF4 -109.17 -48.01 -16.94 24.76 63.45
BIOLS4 12.20 17.39 21.52 24.67 28.99
BISEQ4 3441 53.72 77.91 101.03 150.48
COND5  56.78 74.05 84.27 93.65 106.37
EFF5 -105.51 —24.69 15.17 55.82 88.88
BIOLSS 14.61 18.04 20.36 22.94 26.94
BISEQ5 28.99 53.99 79.04 99.73  162.33
COND6 04.66 123.43 140.65 156.13 177.41
EFF6 -104.89 -15.20 42.87 76.36 96.63
BIOLS6 12.88 17.48 21.56 24.10 28.15
BISEQ6  31.22 51.77 77.37 95.24 150.99

nonparametric bootstrap estimator. Since all of the
models considered here satisfy the Gauss-Markov
assumptions, Efron’s (1982) results show that T
converges to an unbiased test statistic for the
hypothesis that Plim b = 0 as the number of bootstrap
repetitions gets large. Note that these estimators do not
require knowledge of the true model so that they can be
applied in real situations. The small sample accuracy of
this bootstrap estimator was checked by rerunning all of
the experiments with the error vectors drawn from their
empirical distributions. In all cases the results are
almost identical to the Monte Carlo results in Tables
1-4, thus justifying the use of the nonparametric
bootstrap at least for these experimental designs.

Table 1 gives the results of the first experiment,
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TABLE 4: RUN4 RESULTS
Contaminated Errors With Outlier Deletion

Percentiles 5 25 50 75 95
COND1 1.38 1.46 1.50 1.61 1.72
EFF1 -7.69 -3.31 -1.13 -0.02 2.29
BIOLS1 2.01 7.18 10.61 14.16 20.15
BISEQ1 3.52 8.73 11.88 14.93 19.65
COND2 5.52 6.13 6.77 7.46 8.21
EFF2 4297 -2255 -10.90 -3.44 16.02
BIOLS2 3.87 7.75 11.36 15.01 19.46
BISEQ2 12.29 17.19 22.82 28.56  47.48
COND3 10.94 12.39 13.76 15.46 16.99
EFF3 -79.91 -42.80 -18.56 -3.41 32.56
BIOLS3 -0.20 7.59 11.50 14.43 20.16
BISEQ3 12.41 25.47 35.28 54.37 76.82
COND4 3135 36.65 41.38 45.92 51.32
EFF4 -10195 -39.32 -2.31 40.63 79.29
BIOLS4 -1.20 7.87 11.28 13.74 19.80
BISEQ4 23.64 42.65 64.45 86.20 132.02
COND5  62.35 73.44 82.88 91.75 103.33
EFF5 -81.06 -20.41 36.51 79.96 120.77
BIOLSS 0.63 6.50 10.41 13.19 18.13
BISEQS 18.83 35.70 60.52 84.14 135.69
COND6 103.80 12240 138.21 152.95 172.52
EFF6 -103.36 2.11 50.34 91.57 135.16
BIOLS6 -0.61 6.89 10.24 13.56  20.03
BISEQ6 12.95 29.32 5459 8797 124.89

RUN1, with uncontaminated errors and no outlier
deletion. As textbook theory predicts, there are no
biases or differences between OLS and SEQ if the
regressors are independent (corresponding to the suffix
"1" in the tables). The OLS T-statistics are also
unbiased since they are Uniform Minimum Variance
Unbiased estimators in this situation. However, with
even mild collinearity, there are substantial efficiency
differences between OLS and SEQ. More striking are
the increasingly large positive biases in the T—statistics
for the SEQ strategy: these biases average 60 per cent
and frequently exceed 100 per With
multicollinearity it is possible to considerably improve
estimation efficiency using the SEQ strategy, but the
resulting T—statistics will certainly be overestimates.

cent.




FIGURE 1: BIAS IN SEQ T-STATISTIC, RUN1
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FIGURE 2: BIAS IN SEQ T-STATISTIC, RUN3
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Notes for Figures 1 and 2:

These figures show box plots of the percentage bias
in the T-statistics for the SEQ estimation strategy. Box
plots, originally designed by Tukey, are common tools
in exploratory data analysis. They are described in
textbooks like Kitchens (1987). The upper part of the
box is at the 75th percentile, the line in the middle of
the box is at the median (50th percentile) and the lower
part of the box is at the 25th percentile. The upper
whisker is at the "upper adjacent value," which is the
closest observation to the 75th percentile + 1.5 x the
Interquartile Range (the 75th — 25th percentile). The
open circles denote outliers, which are any observations
past the adjacent values. If the data followed a Normal
distribution, then we would only expect to see .7 of
these outliers per box in any of the plots.
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RUN2 considers the same estimation strategies in a
case where 10 per cent of the errors are contaminated.
The results, shown in Table 2, are similar to those in
RUN1. One difference is that now some of T-statistics
for OLS for collinear regressors are positively biased,
although these biases are much smaller than the
positive biases in the T-statistics for SEQ. In addition
there are now clearer efficiency gains to using the SEQ
strategy as collinearity increases.

RUN3 has the same data generation process as
RUN]1, but the OLS and SEQ strategies are modified by
first removing outlying and/or influential observations.
As expected from the properties of the data generating
process, approximately 10 percent of the observations
are removed in each replication. The efficiency
comparisons between SEQ and OLS are similar to those
for RUN1. Note that now the T—statistics for both OLS
and SEQ are biased even for orthogonal regressors. The
magnitude of this bias increases with collinearity for
SEQ, but remains constant for OLS.

RUN4 compares the same estimation strategies as
RUN3 for data generated with contaminated errors.
Since there are now some serious outliers to be removed,
the estimators should perform better than in RUN3.
Although the biases in the T—statistics are lower than in
RUN3 for both estimation strategies, the biases for the
SEQ strategy are still very large for highly collinear
regressors.

One common feature of all the results presented in
Tables 1 — 4 is the large variation in almost all the
measures across the different data designs. Figures 1
and 2 graphically show the bias in the T-statistics for
the SEQ strategy in RUN1 and RUN2. The large
magnitudes of the efficiency differences and biases
clearly suggest that there is large potential gain from
developing better estimation strategies.

CONCLUSIONS

The simulations show the dangers in using the
results of common estimation strategies for hypothesis
testing. Although this study only considers simple linear
regression models, I expect the qualitative conclusions
to hold for more complex econometric models. The




methodology used here can easily be applied to
analyzing any estimation strategy for any well-specified
model®.

This study also demonstrates the feasibility of using
the bootstrap to generate consistent estimates of the
sampling distribution of estimation strategies for
multiple regression models. The large differences in
estimation efficiency between the OLS and SEQ
strategy show that there is large potential gain from
designing better strategies. Even if one only uses OLS,
there are still substantial biases in the T—statistics when
there are outliers and /or influential observations.

Although it would be interesting to explore the
conditions where SEQ works well in these experiments,
theoretical work (Belsley et. al. (1980) =nd Judge and
Bock (1978)) suggest that these conditions will depend
on unknown parameters. Bootstrapping allows
consistent estimation of the sampling distribution of
any sequential procedure, which allows comparisons to
be made for each model and data set.
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aws.

tAlthough some of the simplest experiments reported
here could be analyzed using analytic techniques, the
experiments  involving outlier and influential
observation can not.

2The condition number is defined to be the ratio of the
largest and the smallest eigenvalue of the moment
matrix (X°X) of the independent variables. See Belsley,
Kuh, and Welsch (1980) for further information and
justification for this as a measure of multicollinearity.

3A randomly chosen 10% of the es are independent
normal random variables with mean 0 and variance 100,
and the rest are independent unit normally distributed.
The 10 per cent figure is based on the fundamental
"law" of survey statistics which states that 10 per cent
of any data set is garbage.

4In a number of cases, 600 bootstrap repititions were
run as a convergence check. There were no significant
changes in the results after 200 repititions.

5As suggested in Belsley, Kuh, and Welsch (1980), these
standardized residuals were computed by first excluding
the observation in question from the standard error
calculations.

8Computational costs may become prohibitive in more
complex settings. All simulations for this study were
performed on an 8Mhz. PC/AT clone with a total
running time of 120 hours.
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ABSTRACT

This paper presents a computational procedure
and the numerical results for studying the
effects of outliers or other anomalous data on
maximum likelihood estimates. This procedure is
based on a first order approximation relying on
the implicit function theorem. The numerical
results of this paper are given for a
multivariate signal-plus—noise problem with
independent non-identically distributed noise
terms. These numerical studies will illustrate
the procedure.

1. INTRODUCTION

This paper presents an efficient method of
determining the sensitivity of maximum likeli-
hood estimates (MLEs) to the data used in cal-
culating the estimates. This method is much
more efficient than a standard simulation that
would involve several recomputations of MLE and
is useful in predicting the effect of outliers
or anomalous data on the estimate.

Maximum likelihood estimation is widely used
in statistical analysis. It is found in
estimating the instrumentation error for a
guidance system or a navigation system, in the
geodetic parameter errors for an earth model,
and in orbit determination for satellites. In
addition, the MLE is also utilized in
macroeconomic modeling, biometrics problems, and
education. Because of sophisticated equipment
and the complications of the real world, the
dimension of a MLE problem can be very large;
therefore to have over a hundred parameters in a
single case is very common. Since the MLE has
no closed form solutions, it is very costly to
find a MLE. To find many MLEs for data
sensitivity studies is even harder. Therefore,
it is worth the effort to develop a method which
can approximate MLEs in a quick and accurate
fashion. This method 1s different from the
sampling techniques discussed in Iman [1980].

Section 2 will present the approximation
method named the First-Order IFAP, or Implicit
Function Approximation. The general IFAP theory
can be found in Spall [1986]. Section 3
presents numerical studies on the signal-plus-—
noise problems, and Section 4 is a brief
conclusion.

2. AN APPLICATION OF THE IFT

The First-Order IFAP contains the first two-
terms of the Taylor expansion around the
existing MLE using the implicit function theory
(IFT). Since only the “first-order” will be
discussed, this hyphenated word will be
omitted. The nonlinear estimation for nonlocal
sensitivity can be found in Kalaba [1986]. As

discussed in Spall {1985], IFAP pertains to an
approximation framework of the form handled by a
parameter estimator, that is, from data x|,
KQpeoesXpyy Xy~ N(u, I + Pi)’ IFAP can be used
to gain insight into the properties of the

maximum likelihood (ML) estimate, B, of the

vector of unique and relevant parameters,

B, inu and L. This study demonstrates how the
current software can be used to study the
influence of anomalies or outliers within the

set of x;'s on the estimate B.
Assume that B is found as the root of the

score equation, i.e.,

a . 9L _

3={3-ﬁ'0}
where L represents the log-likelihood func-
tion. Since (1) invclves, a term like
3L/3L = 0 and since it may be that T ¥ O
satisfies 3L/3L = O, IFAP is not necessarily
working with a constrained (positive semidefi-~
nite) estimate of T, A further restriction of
the current IFAP formulation is that all Pi's
are assumed to exist (i.e., (Py~ )1 exists).
We believe that a modification of IFAP to accom-—
modate either the square-root formulation (i.e.,

n

the procedure for ensuring I » 0) or the so-
called information formulation, which relies on
P;”" instead of the nonexistent Pj, would be
fairly straightforward.

Given an observed set of data,

* *T  *T *T . T
x = (xl sXg s seey Xy )" and PPy, veey Py,
the present software computes quantities related

to the first—-order expansion.
: * ~ * * *
B(x{x ) =8(x ) + Tl(x -x )
* -
where Tl = ldB/de]x* é* is computed using the
’

Ak Ak
implicit function theorem and B =B(x ). The
- *
various quantities computed from 8 and T1
include several unit-free, normalized measures
of sensitivity which will be discussed in
greater detail in the next section.

3. SIGNAL-PLUS-NOISE EXAMPLES

There are three subsections in this section.
Subsection 1 will des.ribe how that data was
generated. Subsection lI shall demonstrate the
accuracy of the approximations. Subsection III
uses two examples to show the IFAP results.

80




I. Introduction

A series of numerical results were generated
to evaluate the IFAP methodology and its soft-

ware. These results use the same set of input
*
{xi,Pi} for i =1, 2, veo, 25
where
X, € R15
i T
P o =AA fori=1,2 ..., 25

A; is a 15 x 30 matrix with its elements,

{aij}’ generated randomly using the uniform

distribution over (-1, 1i).
xi* is generated using normal distribution
N(O, Pi +I)
152 )
15 0
L = .
[ .
15
A nonconstrained scoring algorithm is used to
get a maximum likelihood (ML) estimate,
B* (x ), as the baseline value. The param-—
eters of B include all the means
(ul, Vos sse, “15) and the nonzero part of the
following covariance matrix:
[
21,1 -
(6]
Lo 2,2
29,1 29’2 « e s 29’9 .
10,10
0 .
- z15,15_1

That 1s, B contains the unique elements of the
upper 9~ 9 gsection and the diagonal elsments of
row 10 to 15, For a change Ax, from x , the
+Axh ) the

Then, for each

*
IFAP program generates B(x

A %
approximation to 8(x + Ax).

Ax there are ML estimates g corresponding to

~

u,L ). By comparing B and 8, the accuracy of

the IFAP approximation can be studied. Since

A % *
IFAP is a first-order estimator, B(x +Ax|x )

~ %
and the ML estimate B(x + Ax) are expected to

~

be different. However, 8 will approach 8 as Ax
approaches zero.

I1. Accuracy Demonstration

There are six cases in this section: in the
first case, Ax has only one nonzero element in
x; in the next three cases, the Ax represents a
certain percentage change of all elements in one

of the x's with respect to the baseline x*; for
the fifth case, Ax represents a change in one

positive standard deviation for all elements of
one x; the last case assumes one of the samples

Ak~ ok
is abnormal and that 8 =8(x +Ax), and then

*
the 1FAP apptoximation, B(x jx +Ax), is com-
pared to the MLE, B(x ).

CASE 1: The first element of x| was changed by

*
100% of its nominal value (xl), i.e.,

Ax = vec (Ax.,0,.00,0)

1’
where vec denotes the vector form of a matrix,
the zeroes to the right indicate that all the
elements in that column are zeroes, and
* T
X, = (xl ,0 )
1

0
Since only the first element of the first x
was changed, the parameueta Hy and Il | vwere

yesey .

most affected. The (ul,).'.l l) values are (2,21,

223); the IFAP approximates are (2.57, 230); the
MLEs are (2.59, 228). The normalize (defined
below) differences between the IFAP
approximation and nominal values are (.ll,
the differences between the MLE and nominal
values are (.12, .08). The normalization fac-
tors were the square roots of the appropriate
diagonal element of the Fisher covariance matrix
evaluated at the true y and I values used in
simulation, The changes in the other parameters
are small, not exceeding .03 times their stan-
dard deviations.

.09);

CASE 2: The elements of x|, were changed by 50%
*
of their nominal (x 2) values, i.e.,
Ax = vec [...0,.5x 0, ...]
12
Table 1
Comparison of the IFAP and ML Solutions
50% changes for All Elements of x,,
BASE MEAN NORMALIZED |BASE | COVARIANCE NORMALIZED
STATE ESTIMATES DELTA ESTIMATIES OELTA
MEAN SIGHA
n IFAP M IFAP ,i% 1FAP KL 1A
]
1 2.21] 1.84  1.87] -0.12 -0.11 | 223.| 243. 241, [ 0.26 0.2
2 [-7.12] -7.40 -7.32| -0.09 -0.06 { 178.( 183. 164. { 0.08 .08
3 { 2.93] 2.81 2.77{ -0.04 -0.05 | 221.| 225. 224. | 0.06 0.0%
4 1-4.72] -4.96 -4.75] -0.08 -0.01 [ 111.} 132 112. ] 0.02  0.02
s |-1.82{ -2.52 -2.22| -0.22 -0.13 | 211. 241. 233, [ 0.39 o0.28
6 | 3.18] 3.25 3.42[ 0.0z 0.08 | 389.| 390. 390. | 0.02 <C.01
7 [-3.19] -3.78 -3.84| -0.18 -0.20 | 2%0.1 326. 315, | 0.46 O.36
s | 0.69] 0.71 0.55] -0.06 -0.11 [ 300.[ Jos. 302. } O.C  O.0¢
9 |[-s.82] -5.13 -4.89] -0.10 -0.02 | 203.| 200. 19%. |-0.00 -c.0%
10 1.01] 0.87 0.72) -0.04 -0.09 | 267.| 274 4. | 008 0.09
11 |-3.44}] -2.70 -2.76¢| ©0.2) o0.21 [ 179.] 244. 232. [ 0.84 0.85
12 2.89( 2.58 2.76] -0.10 -0.0¢ | 228 | 138 m. | e.1x Aoy
13 [-3.84] -3.92 -3.85] -0.02 -0.00 | 165.¢ t6.. UeS. | 0.00 ..y
16 J-2.mf -y.98 -2.03] 0.23 0.21 ] 460} 832. 515. | 0.90 0.7
15 |-3.63] -4.46 -4.21] -0.26 -0.18 | 107.| 1e6. 152. | 0.76 0.57
. - [
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where O represents all elements in the column
are zeros. The IFAP and ML estimates are given
in Table 1. The BASE MEAN and BASE SIGMA in the
table represent the baseline parameter esti-

A% A
mates, ¥ and I . The updated ML and IFAP

estimates for the means and variances represent
A x S *
the values for Bi(x + Ax) and Bi(x +Ax|x ).

- * *
The DELTAS, B1 -B , are normalized

i and 81 -8

i
by the appropriate standard deviation as
described in CASE 1.

As shown in the table, the actual ML values
and the IFAP estimates are fairly close. Also
note that the sign of the deltas are the same in
ML and IFAP in every parameter.

However, it is not immediate from the table
how well IFAP works as a predictor of the rela-
tive sensitivities. That is, can IFAP accu-
rately detect the parameter that is the most
sensitive, the second most sensitive, etc.?
Therefore, Figure 1 is a plot that compares the
ranks of the estimates in terms of their sensi-
tivities. Sometimes, the IFAP rank may not
watch tue appropriate ML rank, even though the
actual numerical differences between these two
estimates are small., So, an error bar chart was
added in Figure 1 underneath the rank plot.

The ranks of the parameters are assigned by
their values of the normalized deltas from the
largest negative value to the largest positive
(i.e., rank "1” is assigned to the largest
negative delta, rank "2" is assigned to the
second largest negative, etc. until the largest

-

Fil -

Actual Ronk
7]

0 5 10 5 20 25 30
Rank Predicted by IFAP

0.25¢

Rank Predicted by IFAP

Figure 1: ML/IFAP Ranks and Normalized krrors
50% Changes for all Elements of x,
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positive delta is reached). Then, the IFAP vs
ML raoks were plotted. If IFAP and ML ranks
were perfectly matched, then the plotted points
would stay on a 45° line; on the other hand, if
the IFAP and ML ranks were completely unrelated,
the plotted points would be scattered evenly
throughout the area plotted.

The error bars show the absolute differences
between the IFAP and ML estimates

~

|Bi(x* + Axlx*) -B,(x +4x)|, normalized by the
appropriate standard deviation. If the numeri-
cal differences between the IFAP and ML esti-
mates are small then the rank agreements are
less important.

Note that, in terms of ranks, the greatest
discrepancy betwcen IFAP and ML nccurs in the
middle of the plot (see Figure 1). These param-
eters, however, also correspond to those that
are least sensitive to Ax (and thus of least
interest), and, as shown in the error bar chart,
thiose for which the normalized errors between
IFAP and ML are smallest. This greater
discrepancy in ranks can be attributed to the
interest variability associated with such small
normalized errors.

CASE 3: All the elements of x; were changed by

*
50% of their nominal (xl) values, i.e.,

*
Ax = vec [.5x1,
where 0 indicates that all elements in that
column are zeros. This case is similar to
CASE 2. The purpose of this case is to demon-
strate that CASE 2 was fairly typical.

0, «vs, 0]
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Figure 2 shows the rank plot and the error bar
chart of this case. The pattern in this figure
is the same as in Figure 1. The lower left and
upper right of the plot have many points lying
on the 45° line while the error bars at center
area are short and have the same maguitude
errors as in CASE 2.

Since the plot and chart together convey the
essential information for comparing IFAP and ML,
a table such as Table 1 will be omitted in this
case as well as in CASES 4 and 5.

CASE 4: All the elements of x;; were changed by
100X of their nominal (x:Z) values, 1i.e.,

*
120 O ool

Ax = vec [...,0, x

In comparison with CASE 2, Ax is twice as
large: this case also shows larger differences
on the error bar chart, and a more scattered
rank plot. Figure 3 suouws that the largest
error in the chart tripled in values, and there
are 6 more points off the 45° line in the
plot. However, it is apparent from the plot
that there is still a strong tendency for the
points in the rank plot to lie near the 45°
line. The IFAP approximation has the same ranks
as the MLE at the lower left and upper right
corners of the plot. The points off the 45°
line are concentrated at the center section and,
as before, correspond to smaller normalized
errors.

304
254

20+

Actual Rank

S g e
10 15

Rank predicted by (FAP

l.l_,__.r...,____,.l_.lm
15 20 25 3o

s 10
Rank Predicted by IFAP

1

R
20 25

30

0.8
0.4

4

Errors

0.0

Figure 3: MI,/IFAP Ranks and Normalized krrors
100% Changes for all Elements of x,

—

83

CASE 5: All the elements of x) were changed by
positive one standard deviation, 1.e.,

Ax = vec[Axl, O, seuy q

where

1/2
Ax =[(zl’1+P1 ),
(22’2+p

(£

PsP

1 1,

L)
2,2
+ Pl
PsP

Some of the changes in the previous cases may
be small in comparison to the standard devia-
tions since 100X of a small value is still
small. The changes of the elements in this case
have the same ratio to the standard deviations;
therefore, the rank plot at the top of Figure 4
is expected to be more evenly spread out than
the previous plots. From this spread, the
points in the plot still tend to stay along the
45° line and several of the most sensitive
parameters have been assigned at the same ranks
in both IFAP and ML. Referring to the error bar
chart at the bottom of Figure 4, the points that
tend to be off the 45° line in the plot have
smaller errors, less than one-tenth of a stan-
dard deviation. Therefore, the IFAP approxima-~
tion and MLE are closely matched.

i/z‘

)I/Z]T.

CASE 6: Assume that all the x's have the same
* *
xi's as in the previous cases (1-5), except Xq
*
is replaced by 2x3- Then all elements of xj =
*
2x3 are changed back to original values, i.e.,
30 e
- »
25 »*
]
*
o n
20 y Lo~
= *
9 ~
s S
3] o«
b4 » N
10 »
-
»
*
1%
5 =
*
»
»
e
0 R R A - T T 1
o s 10 15 20 25 30
Rank predicted by IFAP
0.2
4
S 0.1
0.0
0 s 10 15 20 25 30

Rank Predicted by IFAP

Figure 4: ML/IFAP Ranks and Normalized Errors
Positive One Standard Deviation Changes
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The two examples shown in this section are
displayed in Tables 3 and 4. Each example was
This case was designed to show how IFAP would do generated from nine similar IFAP runs. Every
when one of the x was an outlier. The compari- run was generated from the same baseline
son of the IFAP approximation and MLE is shown

. *
Ax = vec{u, a, X, 0, +.

in Table 2.
Table 2
Comparison of the IFAP and ML Solutions
100% changes for All Elements of x4
Table 3
BASE KEAN NORMALIZED |BASE | COVARIANCE NORMALIZED Relative Changes in § Parameters to Their Standard Deviations
STATE ESTIMATES DELTA ESTIMATES DELTA for 100 Percent Changes in x (First 9 of 25 Samples)
NMEAN SIGMA
ML IFAP] ML IFAP M IFAP | ML IFAP
SAMPLE(right) x; x, LN X, Xy xg X, Xy Xq
1 1.43 2.21 1.7 0.24 0.09 246. ¢ 223. 216. j-0.286 -0.38 PARAMETER(down)
2 |-7.47] -7.12 -7a2{ o1 o.n1 | 181.] 178. 172, |-0.05 -0.12
3 [ 4.43} 293 3.37| -0.48 -0.34 | 338.1 221. 1%6. |-1.51 -2.10 u 0.04 -0.06 -0.07 0.14 0.11 -0.01 0.50 0.26 0.43
4 |-5.20| -4.72 -4.84{ 0.15 0.11 | 116.] 111. 103. [-0.07 -0.17 ') -0.36 -0.56 -0.12 0.28 -0.03 0.29 -0.09 ~0.12 0.07
5 -2.261 -1.82 -1.91 0.14 0.11 224.| 211. 201. |-0.17 -0.30 3 0.53 0.22 0.31 -0.15 0.13 -0.04 0.23 0.07 -0.47
™ -0.25 0.22 -0.09 0.15 -0.42 0.20 -0.24 -0.07 0.26
6 | 4.47] 3.18 3.08] -0.41 -0.44 | 500.] 389. 3s6. |-1.44 -1.86 ™ -0.03 <0.02 -0.11 0.13 -0.2] 0.09 0.40 0.16 -0.54
7 -3.79| -3.19 -3.37 0.19 0.13 307, 290. 279. [-0.22 -0.35
8 1.92} ©0.89 0.95) -0.33 -0.31 | 360.| 300. 284. [-0.77 -0.98 '™ 0.33 -0.73 0.43 0.01 0.26 0.00 -0.00 -0.24 0.42
9 |-4.11] -4.82 -4.89| -0.22 -0.25 | 246.| 203. 194. [-0.55 -0.66 ¥y 0.07 ~0.55 -0.11 -0.39 -0.17 -0.06 -0.25 0.13 0.25
10 2.70} 1.01 1.03] -0.54 -0.53 | 470.| 267. 202. [-2.61 -3.46 Ve -0.32 0.12 0.32 -0.19 -0.07 -0.04 -0.31 0.55 -0.16
My 0.09 -0.03 0.24 0.21 -0.35 -0.32 -0.17 0.1% 0.22
11 |-3.54) -3.4¢ -3.23] 0.03 o0.07 { 178.] 179. 179, | 0.00 Ve 0.15 ~0.42 0.53 0.20 -0.45 <0.02 -0.22 -0.0¢ 0.2%
12 2.58| 2.89 3.13| 0.10 0.17 [ 331.( 328. 328. [-0.04 .
13 |-4.23] -3.84 -4.08| 0.15 0.08 | 169.} 165. 156. |-0.05 i -0.27 ~0.34 -0.08 -0.07 0.12 -0.20 0.08 0.09
14 [-3.48f -2.71 -2.78{ 0.2¢ 0.22 { 487.( 460. 4s51. |-0.24 ¥iz 0.50 0.24 -0.19 -0.01 0.59 ~0.42 -0.01 0.26
15 |-4.14] -3.63 -3.76| 0.16 0.12 | 120.] 107. 101. [-0.16 [ TH 0.06 7.7 0.4 -0.17 2 36 -0.20 -0.42 -0.00
NN VR S Usa <0.11 -0.21 -0.24 -0.03 -0.19 -0.3) 0.40 -0.64
Vis -0.23 -0.26 -0.{1 0.35 -C.15 -0.15 -0.17 0.04
Hu([‘ 3.3¢ 4.53 s.uv 2.50 .60 2.37 3.49 2.78 4.12
I,. 0.05 0D.04 0.23 0.2 0.23 0.02 1.17 0.54 0.4%
The baseline value in Table 2 is I 0.98 1.14 n.05 0.6% 0.04 0.81 0.03 D0.0Z 0.21
Iy., 1.42 0.16 3.0 0.25 -0.13 0.00 0.i4 0.0} 0.17
~ % ~ * I e G.17 ©.07 -0.05 0.37 1.52 0.2} 0.43 -0.072 0.1%
8 =8(x =-Ax). The MLE have the same values Ig. -0.12 0.08 0.08 -6 31 N.10 0,06 1.12 0.24 1.7%
- * Is s 1.21 7.43 1.02 0.26 -0.0) -0.06 0.01 0.37 0.59
1,. 0.27 0.66 0.17 0.78 0.10 2.0 0.12 0©.l14 0.3
as the previous baseline value B(x ), and the o 036 -0 08 557 o1c 91% oos okd Vv o
a Iy .9 0.00 -0.01 d.46 0.)e 0.43 ©.5" 0.18 0,30 0.1¢
~ * J* Tie-14e 0.12 0.65 1.80 0.51 N.70 -0.01 9.2%5 ©.0% Q.39
IFAP approximation is 8(x |x - A4x). The nor~
iy 0.18 0.44 -0.06 0.15 -U.00 0.17 -0.10 0.39 ©.09
Lizoaz 1.94 0.26 0.08 0.25 1.46 .17 -0.01 0.06 D.46
i3, 0.07 1.% -0.0% .02 0€.17 0.0 0.9% 7.2 a.c
malized deltas are the differences between the gy 0,14 030 923 m1s 006 oe3 687 bae 2%
Lis s 0.04 0.18 0.03 0./8 V.12 0.03 0.1b -0.0% -Q.0%
~
IFAP or ML estimates and B ; they are then HE, 7.07 B.US 571 489 523 3.76 5,90 4.47 .93
divided by their standard deviations as
described in CASE 1.
Table 2 shows that the IFAP and ML estimates
.~ %
are near one another even though B(x =-Ax) is
Table 4
Ak
Relative Changes in B Parameters to Their Standard Deviations
far from B(x ), and that the (normalized) deltas for 100 Percent Changes in x {(First 9 of 25 Samples)
for the IFAP and ML have the same signs. Thus, SARPLE(e1ght) . . . . . . .
x
IFAP performs well for this outlier-type case, PARAMETER(down) : ! * ' ¢ ! * *
too. wy -0.03 0.08 0.09 -0.13 -0.06 O "> ~_.49 -0.24 -0.42
'S 0.34 0.56¢ 0.11 -0.29 .03 -0.29 0.08 0.1Z -0.07
uy =0.5% 0.2} -0.34 C.}4 -0.311 0.0} -0.2¢ -0.07 O 4S
1I11. The IFAP Results/Interpretation e 0.22 -0.22 0.1l -0.i6 0.4! -0.21 0.24 0.08 -0.2
us G.00 0.01 ©0.11 -0.1) 0.1? -0.08 -0.40 -0.16 0.%S
W, -0,36 0.74 -0.4% -0.02 -0.25 -0.01 0.0l 0.23 -0.42
There would be several ways to apply IFAP in o 20007 055 0.10 0.38 0.17 0.07 0.25 -0 13 -0.45
i " 0.27 ~0.12 -0.31 0.19 0.0R 0.04 0.31 -0.% 0.l
actual data processing, e.g., approximating the be R S S oy S0s 0gy bsrbene Dute
estimates and studying the sensitivities. This vie -0.16 0.43 -0.53 -0.10 0.48 0.00 0.2z 0,04 -0.24
section presents two tables that give some v 0.26 0.34 0.07 0.07 -0.14 (.21 -0.07 -0.31 -0.10
M -0.50 ~0.24 017 -0.0N0 -N.SR 0 .40 0.0] 1. 08 -0.2e
insight into such applications of IFAP., Kecall e 1009 056 0.08 0.17 0.14 0.19 042 0.25 A v
that the IFAP program uses the same data as the bre 0.11 0.24 0.22 0.08 0.20 0.32 -0.40 0.26 0.64
Uy 0.20 0.24 0.12 -0.3! 9.1% 0.15 0.1% -0.10 -0.0%
ML estimator.
uliy 1.28 4.57 3.06 2.51 31.%0 215 3,46 2.75 4 09
1 007 0.02 0.38 -0.25 M.01 0,02 -1.¢ v.%4 0.%2
Most sensitivity studies require a large ) 10093 117 -0.12 0.8 -5.01 -0 88 -0 00 -0.00 -0 13
number of runs. Therefore, a study was made to Iy S131 <0018 -2.10 -0.25 011 €.05 -0.1) -D.00 -0.79
T o <0.19 ~0.66 -0.17 -0.39 -1.42 -0.24 -0 41 0.02 -3.17
investigate the efficiency of the IFAP pro- .. 0015 ~010 -0.30 0.00 -0.11 -C.05 ~1.14 -0.28 -1.02
gram. The study, including 51 samples, 59 [P S1.16 -2.53 -1.86 -0.27 0.01 0 04 -0.05 -0.41 -0.34
I, » 0. 24 ~0.6% -0.35 -0.74 -D.DA -0.00 ~0.}2 -0.1b -0.¥p
states and 154 parameters, shows that the IFAP HN 12738 006 -0.98 0,20 0,19 .0 34 563 -1 46 -0 20
CPU time was less than 1/25 of that required to Las 0.01 -0.01 -0.66 -0.3% :0.45 -0.%3 -0.16 -0.28 -0.08
Tia 12 Q.08 -0.72 -3.46 -0.50 0.1 Q0.0 ¢ 41 -C.0D -0.%0
generate an MLE by DL/scoring. For a case size
4 =0 19 ~0.43 0.01 -0.16 -0.00 -0 17 Q0 11 -2 ¥ -0.10
like this large, an IFAP run took about 10 CPU FE 194 <020 -0.03 -0.29 -] 81 -1 11 007 -0.06 -0 48
seconds on IBM 3083. 1In other cases, of course, o SIS S R IR SO S I A
the CPU times may vary according to the number Liv s 0 04 -0.16 -0 25 -0 A4 011 -0 NS -0 KS 00S 0 06
of x's, states, and parameters. Py A2 RIZ 1L IR S OR €04 136 "% 4 44 T B9
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"

x
8 , x, and Py's. Each column corresponds to

the one sample that was changed by 100%Z in

generating 8; the other samples remain at their

x* values. Table 3 was generated using the

*
x,'s and P, 's as in Section 2. Table 4 was

i i *

generated with a modified X3y the elements of
which were doubled in compafison with the values
of Table 3. This will illustrate how IFAP
performs in the presence of an outlier (sample
3).

Tables 3 and 4 show the normalized deltas,
i.e., the difference between B and B, normalized
by the Fisher—based standard deviations as
described in CASE 1. The columns headed by x,,
X2, +es, Xg correspond to samples, 1, 2, ...,

9., The values for tul and KLl at the bottom of
each column denote the sum of the absolute
values of the entries in that column.

~

~k o~ %
Table 3 was generated using 8 =8(x ) and

N(O,P, +L) for i =1, 2, ..., 25.

*
¥
that the §Ll's are about twice as large as the

Tul's within all samples. The differences

in IZ1 and Mp) may be largely attributed to the
relationship between Ax and Ap and Ax and AL.

Notice

Recall that the equation 2

du
Ax and Ay have a linear relationship, while the

= 0 implies that

equation aL 0 implies that Ax and AL have
approximately a second-order relationship.

Table 4 was generated using

Ak~

B =B(x" +8x;), x,~ NO, P +1)
*

2, vve, 25 and Ax3 = vec[O, 0, Xgs 0, ...]. The

for i = 1,

purpose of this example is to show the outcome
of IFAP when there is an outlier, Sample 3, in
the system. In real data Analysis, outliers may
dominate the result and lead to erroneous con-
clusions. Although IFAP is not designed specif-
ically for isolating outliers, the unusually
large value of IL1 and the ratio of

121 to tul for sample 3 reflect the fact that
this sample 1s an outlier.

4, CONCLuSION

This study demonstrates that IFAP can be an
effective and efficient tool for studying the
impact of anomalous data on the ML estimates of
means and variances.
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In Section 3.1l it was shown that the current
first-order implementation provides an accurate
approximation to the changes in parameter esti
mates resulting from changes in the data of a
selected x. It was found that if the parameters
were ranked in order of their sensitivities to
these changes in data, the ranks of the param-
eters as given by IFAP were close to the ranks
as given by recalculating MLEs. This was espe-
cially true among those parameters that were
most sensitive to data changes, which, of
course, would correspond to the parameters of
most interest.

Section 3.III1 demonstrates how IFAP might
apply in actual data Analysis. In particular,
two tables were presented that illustrate how
IFAP can be used to show at a glance how sensi-
tive various parameter estimates are to changes
in the data of one x. As an aside, it was found
that we were able to detect an outlier x by its
abnormal impact on the estimate of the variance
terms; we have not yet developed a rigorous
theoretical basis for this observed phenome-
non. We found that it was approximately 25
times more efficient (in terms of CPU time) to
calculate updated IFAP estimates than to calcu-
late updated MLEs in a larger size problem.
This may be the difference between feasibility
and infeasibility in a large-scale data sensi-
tivity study.
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BOOTSTRAP PROCEDURES IN RANDOM EFFECT MODELS
FOR COMPARING RESPONSE RATES IN MULTI-CENTER

CLINICAL TRIALS

Michael F. Miller

Hoechst-Roussel Pharmaceuticals Inc.
Somerville, New Jersey 08876

1. INTRODUCTION

Clinical trial designs for comparing an
experimental treatment with an appropriate
control commonly use several investigators
located at a variety of medical centers,
all operating from the same protocol.

This paper is concerned with treatment
versus control comparisons based on a
dichotomous response, A specified event,
termed a response in this paper, is
observed to have occurred or not occurred
for each subject in the trial. The
context for a statistical comparison of
treatment and contr~l is a stochastic
model assuming treatment and control
probabilities of response at each center.

DerSimonian and Laird (1986) cbserve
that the control and treatment response
nrobabilities will likely vary from center
to center, or vary from study to study in
a meta-analysis of similer clinical
trials. They proprse a random effects
model assuming that a center’s control and
treatment response probabilities are
themselves random variables with a
distribution dependent ca the population
of centers under study.

Let <P,Q> be the control and treatment
response probabilities at a given center.
The pair <P,Q> are themselves random
variables with:

(1.1) jecint distribution of <P,Q> =
g{p.q), <p,q> varying in the
unit square, or in a subset of
the unit square.

Following the selection of <«P,Q»,
independent samples of n control and m
treatment subjects are observed. If X, Y
are the observed frequencies of the
control and treatment responses, then X
and Y are assumed to have independent
opinomial p.d.f.’s conditioned on the
assumed values P=p, Q:=q.

If k centers are planned for a
multi-center trial, then the unobserved
response probabilities <Pj,Qj>, j=1,k are
assumed i.i.d from g, while Xj,Yj are the
observed control and treatment response
frequencies from nj,mj subjects at
center j§.

This paper explores the use of the
bootstrap method (Efron, 1982) to compute
significance levels and confidence
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intervals for statistical inference
problems generated by the above model.
Parameters are defined in terms of the
random effects density g, and estimates of
these parameters are generated from
estimates of g based on the observed
response frequencies. An important
special case is studied first: the
proportional odds assumption, where the
treatment to control odds ratios are
assumed to be homogeneous across centers.
Nonparametric versions of the bootstrap
are then explored for the more general
random effects model when the proportional
odds assumption cannot be used.

Two examples will be given illustrating
the use of these methods. One example
involves a multi-center trial, the other
example is a meta-analysis of several
trials discussed in DerSimonian and
Laird’s paper. For this meta-analysis the
sampling unit for the random effects model
is & particular study rather than a study
site. The models and methods used here
are formally the same for a meta-analysis
as they are for the multi-center trial
although the interpretation of the results
can be different.

2. PRCPORTIONAL ODDS MODELS
Suppose, for the random pair «P,Q>, the
following can be assumed:

(2.1) Q/(1-Q) = r*P/(1-P), r a fixed
positive constant.

Here the odds for occurrence in the
treatment group is a constant multiple of
the control odds for occurrence, and r is
the constant odds ratio, treatment to
control. Under this assumption the random
pair <P,Q> must vary within a one
dimensional subset (curve) of the unit
square.

This important special case has been
studied extensively in connection with the
Mantel-Haenszel test. Note that the
hypothesis of r-1 in the proportional odds
model implies Pj:Qj for every center
j=1,2,..kx. This is the usual "no
treatment effect" null hypothesis for the
Mantel-Haenszel test. Wittes and
Hallenstein (1987) discuss approximations
to the power of this statistic and give an
excellent reading list on this subject.




Under the proportional odds assumption
inferences about the fixed odds ratio r
(or log cdds ratio 1lr = 1ln(r}) ) do not
require a random effects model even though
the response probabilities can vary
considerably from center to center. The
conditional likelihood function given the
assumed values Pl=pl, P2=p2,....Pk=pk, and

qj = r*pj/(L-pj+r*pj)

can be expressed entirely in terms of the
control response rates, pj j=1,..k, and
the common odds ratio r. The maximum
likelihood estimates of r and pl, p2,...pk
cannot be found in closed form, but an
elementary numerical iteration can be used
to calculate the estimates and their
standard errors. Bootstrapping the
sampling distribution of the MLE of r, and
the Mantel-Haenszel estimate of r given in
Fleiss, 1981, suggests their sampling
distributions are very similar for
examples involving moderate within site
sample sizes.

Computation of the MLE’s permits the
use of the likelihood ratio test for
assessing the goodness of fit of the
proportional odds sssumption. In practice
this test should be made at a level higher
than p=.05 so that the greater sensitivity
available under homogeneous odds ratios is
not so easily assumed. Examples of these
methods are given in section 5. The next
secticn discusses inferences when the odds
ratios cannot be assumed to be
homogeneous. Because sample logits tend
to be more normally distributed than odds
ratios, log odds ratios will be used from
now on.

3. A NONPARAMETRIC RANDOM
EFFECTS FORMULATION
Consider again the random response
probabilities <Pj,Qj>» j=1,...k as a random
sample from the joint p.d.f. g defined in
{1.1). The nu'l hypothesis of no
treatment effect proposed here is given
by:

(3.1) ¢glp,q) = glq,p).

Symmetry of the joint p.d.f. about p=q
conveys the essential meaning of no
treatment effect. Note that any real
valued transformaticn having the property
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T(p,q)=-T(q,p) yields a distribution
symmetric about z2ero for T{P,Q) under
(3.1) and this in fact characterizes
(3.1). In particular, T(p,q)=1ln(gq/(1-qg))
- ln(p/(l-p)) = log odds ratio satisfies
this property. Estimates of g under (3.1)
are proposed in section 4. Estimates of
the joint p.d.f. g in general are
formulated now in terms of the estimated
control and treatment responce rates:

PHj = (Xj+.5)/(nj+l)
QHj = (Yj+.5)/(mj+1), j=1,....k.

Three nonparametric estimates of g are
considered in this paper. Each of these
estimated joint p.d.f.s assigns all of its
mass to the subset of observed response
rate pairs:

SPRT = { <PHj,QHj>: j=1,..k }.

(3.2) GHl(p,q) = 1/k, ¢p,q> in
SPRT,

(3.3) GH2(p,q) = e¢*nj*mj/(nj+mj),
p,q> = <PHj,QHj>, where ¢ i:
the constant making GH2 sum
to 1.0 over SPRT,

(3.4 GH3(p,q) = maximum likelihcod
estimate of g among p.d.f.s
assigning all mass within
SPRT.

Estimates (3.2), (3.3) are
computationally simple, and are consistent
when k and the min{nl,...nk,ml,....mk}
diverge to infinity. The details of this
are not relevant here because while the
nj's and mj’s are often large, k=number of
centers is usually small.

The maximum likelihood estimate
specified by (3.4) can be obtained from
the EM algorithm (Dempster, Laird, Rubin,
1977), but a closed form solution is
available also. The likelihood function
that must be maximized has the form:

mi(g) = E"x.’::gw Byj
where
gy ° Blpw.qw),
Dyj = pwd (1-pu)Rd X5 x

qw¥d (1-qu)Mi Vi,
<pw,qw> in SPRT.




The details of this will be given in
another paper.

Once an estimate of g is obtained,
namely GH using either (3.2), (3.3), or
{(3.4), then estimates of the log odds
ratio can be formulated. In this section
the log odds ratio is not constant. Let

(3.5) 1r(g) = E[1n(Q/(2-Q)) -
In(P/(1-P)): g},

where the expected value is taken with
respect to g, and g is such that 1r(g) is
finite. Define

(3.6) LRH = 1r(GH)

as the estimate of the mean log odds ratio
based on GH. Note that LRH is just a
weighted average of the empirical log odds
ratios, the weights provided by GH. The
next section discusses how the sampling
distribution of LRH can be approximated
for forming confidence intervals and
computing significance levels.

4. APPLICATION OF THE BOOTSTRAP

The role of the bootstrap here is to
provide an approximation to the sampling
distribution of LRH, where both this
sampling distribution and LRH are
determined by GH. The bootstrap
distribution can be an imperfect
substitute for the unknown sampling
distribution of LRH determined by g, the
true underlying random effects p.d.f.
dith smell k there is no guarantee that
the measure defined by GH is anything like
the measure defined by g. There is also
the issue of whether a g exists, whether
sites chosen for a clinical trial are
representative of any real population,
J7ith some p.d.f. g. Note that these
problems of small k and a population of
sites disappear under proportional odds
because the odds ratio MLE was driven
entirely by the conditional likelihood
given the assumed values of the site
response probabilities. However, when
proportional odds cannot be assumed, using
GH as a working model in & random effects
setting can be more credible than the
usual Mantel-Haenszel tests even with the
small k and the artifactual nature of GH.

In the realm of heterogeneous odds
ratios, the conclusions derived from a
data analysis may depend heavily on the
selection of the method for estimating g.
The bootstrap readily provides answers to
the inference problems within any
"computable” empirical model selected for
analysis, and therefore provides the
ability to assess how the general
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conclusions regarding treatment effect
depend on the selection of this model, as
will be illustrated by examples in section
5. These examples will also illustrate
the price in precision that must be paid
in moving away from a proportional odds
assumption.

The general algorithim for the
bootstrap used here is as follows for the
random effect situation. The percentile -
t method of generating interval estimates
for 1r(g) will be used in order to take
aedvantage of any reduction in coverage
probability error (Beran, 1987).

(4.1) Obtain an estimate, GH, as in
(3.2), (3.3), or (3.4).
Compute LRH and SEH, an
asymptotic approximation to
the standard error of LRH.

SEH = SQRT (I GH;*(vhj + o2(CH))},
J

where

vhj=1/(nj*PHj* (1-PHj)) +
1/(mj*QHj* (1-QHj)),

02(g)=Variance (1n(Q/(1-Q)) -
n(P/(1-P)):g).

(4.2) Sample i.i.d. k pairs
<PBj,QBj> from GH.

(4.3) For each j, sample nj,mj
binomial trials using response
probabilities <PBj,QBj> and
note XBj,YBj, the response
frequencies, j=1,2,...k.

(4.4) Using the data obtained from
{4.3) compute the estimate GHB
in the same way GH was
computed from the original
data. Then compute LRHB and
its approximate standard error
SEHB from GHB. Also compute
ZB=(LRH-LRHB)/SEHB, the
studentized transformation.

Repeat (4.2, 3, 4) NB times (I used
NB=600) to obtain empirically the sampling
distribution of LRH when using GH as the
random effects p.d.f. The empirical
distribution of the ZB’s is used to form a
percentile-t interval estimate of 1lr(g).
If Z(2.5) and Z2(97.5) are the 2.5th and
97.5th percentiles of the ZB’s then

(4.5) ({LRH + 2(2.5)*SEH, LRH +
2(97.5)*SEH}

is an approximate 95% confidence interval
for 1r(g).




To obtain a test of the null hypothesis
given in (3.1), namely g(p.q)-g(q.p), then
the following estimation procedure is used
for g assuming the null hypothesis is
true. Let GH again be an estimator of g
with support SPRT.

(4.6) First translate the points in
SPRT so that the center of
mass falls on the line p=q.

PHTj = PHj + (mean[QH:GH] -
mean[PH:CGH])/2

QHTj = QHj + (mean[PH:GH] -

mean[QH:GH))/2

(4.7) Now define the estimated null
distribution GHO, GHO(p,q) =
(1/2)*GH(p,q), for
<p,q>=<PHTj, QHTj> or
<QHTj,PHTj> j=1,2,...k.
GHO(p,q)=0 elsewhere.

Note that GHO is just the original GH
equally divided among the translated
points and their reflections through p=q,
and by construction satisfies the null
hypothesis. A reflection of the points in
SPRT without a translation would create
too wide a dispersion for GHO if most of
the points in SPRT were far from the line
p=q. This would result in an
unnecessarily heavy tailed null
distribution for LRH.

To obtain an empirical one tailed
significance level for the estimate LRH
repeat steps (4.2), (4.3), (4.4) NB times
sampling from GHO instead of GH. Here the
empirical distribution of the LRHB’s will
be symmetric about zero and can be used
directly to compute the significance
level. If large values of LRH are
expected with a treatment effect, then the
bootstrap significance level is:

(4.8) phb = (number of LRHB'’s
exceeding LRH)/NB.

Again if k and the nj’s, mj’s are large
then phb will be close to the actual
attained significance level under the nul)
hypothesis. With smail k this method
provides an internally consistent
approximation within the context of
sampling from GHO. Using several methods
to obtain GH as discussed in section 3 it
is possible to obtain several values of
phb to see if the overall treatment effect
conclusion is affected by the method of
estimation. These procedures are
illustrated in the next section.
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5. TWO EXAMPLES
The first example involves a test drug
for treating ulcers. The following data
was obtained after two weeks of treatment.

S RATIO

;}lulg_‘ NO.P:\-IQ&\E.?S/N % NO. Hg:legl)/H % 52360‘7’3 PLACEBO
1 11/33 33.3 24/37 64.9 1.31
4 /25 8.0 5/26 19.2 1.0!
3 5/28 17.9 1723 0.4 0.70
4 4/16 25.0 3/14 21.4 -0.20
5 v 41.2 6/21 28.6 -0.56
6 3723 13.0 4/24 16.7 0.29

This drug was clearly effective after

, weeks of treatment. The question here
is whether an efficacy claim is warranted
after two weeks.

The likelihood ratio test for
proportional odds yields a chi-square
statistic = 6.09 with 5 degrees of
freedom, clearly not significant at p=0.2.
Assuming proportional odds, the likelihood
ratio chi-square statistic testing the
hypothesis that r=1 is 4.31 with 1 degree
of freedom, significant at p=.05. The
estimated common log odds ratio is
.58 +- .28 with a 95% confidence interval
of (0.03, 1.13). This analysis suggests a
claim for efficacy relative to placebo can
be made after two weeks of treatment.

What is disquieting about this
conclusion is that the last three study
sites did not yield overwhelming evidence
for the drug. The lack of significance in
the test for proportional odds may be due
more to small sample sizes rather than
homogeneity of odds ratios.

The three estimators given by (3.2),
(3.3), and (3.4) were used in the context
of a random effects model. The following
results were obtained for the expected log
odds ratio.

THO WEEKS ON TREATMENT
MEAN LOG ODDS RATIO ESTIMATES

TYPE OF ESTIMATE ESTIMATE * SE %% CONFIDENCE INTERVAL
Equal Mghts (3.2) 0.39 1 0.39 (-0.29, 1.09)
n*n/(n+m) (1.3) 0.54 ¢ 0.39 (-0.14, 1.26)
MLE (3.4} 0.29 ¢ 0.53 (-0.45. 0 9%)

The standard errors were obtained via the
asymptotic approximation, and the
confidence intervals were obtained using
the percentile-t bootstrap method given by
(4.5). With the exception of the MLE,
these asymptotic standard errors were in
egreement with the corresponding bootstrap
standard errors. The bootstrap standard
error for the MLE was 0.38, somewhat lower
than 0.53 given above.

Bootstrap significant levels were
obtained using (4.8).




ESTIMATED P LEVEL

Equal HWgts 0.15
n*m/(n+m) 0.09
MLE 0.27

The confidence intervals and significance
levels do not support a claim for efficacy
because the estimators GH tend to
emphasize the variability in the log odds
ratios. Note that the Equal Weights
estimator gives more weight to the
negative studies than the second estimator
which weights the sites according to a
sample size factor. Note also that this
second estimate is closer than all the
others to the proportional cdds estimate,
because the sites are weighted in a manner
similar to the Mantel-Haenszel method.

The random effects MLE (3,4) assigned
weights according to the following
proportions:

SITE 1 2 3 4 5 6
MLE .167 .000 .071 .135 .l25 .501

Most of the weight was pulled toward site
6, where the results for the drug were not
spectacular. Why site 1 got one sixth of
the weight and site 6 got 50% of the
weight is a subject for enother paper.

In summary, this first example seemed
to satisfy the proportional odds
assumption which, when applied, led to a
conclusion of drug efficacy after two
weeks on treatment. This conclusion
relied heavily on proportional odds
because all three random effect analyses
yielded nonsignificant evidence for
efficacy.

The second exsmple, discussed by
DerSimonian and Laird, is a meta-analysis
of placebo controlled trials testing the
effectiveness of cimetidine for healing
uleers (Winship, 1978). The following
data was taken from this study.

L S RATIO
STUDY mpﬁéﬁfgg N % NO. H?:‘LKE;D[N % DgSGO(I)g PLACEBO
1 8/19 2.1 16/19 84.2 1.99
2 5/14 35.7 26/30 86.7 2.46
3 12/20 60.0 17720 85.0 1.33
4 s/18 27.8 17/20 85.0 2.69
H) 1/ 29.2 47765 72.3 1.85
6 421 19.0 13721 61.9 1.93
7 16/42 38.1 36/43 83.7 2.)2
8

§5/142 38.7 74/130 56.9 0.74
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This example is interesting because the
proportional odds assumption is rejected
by the data, but this should not stand in
t@e way of observing that cimetidine was
significantly more effective than placebo.
The chi-square test for proportiocnal odds
was 15.85 with 7 degrees of freedom,
significant at the .05 level. Since a
common log odds ratio is rejected by this
data, estimates of a mean log odds ratio
are given.

EFFECT OF CIMETIDINE
MEAN LOG ODDS RATIO ESTIMATES
TYPE OF ESTIMATE

ESTIMATE ¢ SE 95% CONFIDENCE INTERVAL

Equal Wghts (3.2) 1.79 ¢+ 0.30 (1.32, 2.32)
a*a/(n+m} {(3.3) 1.41 ¢ 0.37 (0.77, 2.13)
MLE (3.4) 1.74 £ 0.39 (1.21, 2.08)

As evidenced by the estimates and the
confidence intervals, the estimated mean
log odds ratio is sufficiently far away
from zero regardless of which method of
estimation is used. All three bootstrap
significance levels were less than .00l.

The estimate (MLE) of the log odds
ratio under the erroneous assumption of
proportional odds is 1.41 +- 0.17. 1In the
random effects model the conclusion of
cimetidine efficacy is still apparent even
after paying a substantial penalty in the
standard error. Note that again the
second estimator (weights prop. to
n*m/(n+m) ) gives a value similar to the
MLE under proportional odds.

The maximum likelihood estimate (3.4)
of the random effect distribution was:

STUDY 3 5 6 7 8
MLE .062 .225 .036 .529 .148

Studies 1,2, and 4 received zero weight.

?he SAS programs used in this paper are
available by request from the author.
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Bootstrapping the Mixed Regression Model with Reference to
the Capital and Energy Complementarity Debate*

Baldev Raj, Wilfrid Laurier University

1. INTRODUCTION

The estimation of the partial Allen elas-
ticity of substitution between energy and capi-
tal in the manufacturing process has been the
subject of a number of studies. The results
from these studies have not always been in
agreement. For example, Berndt and Wood (1975)
found that capital and energy were complements,
while Griffin and Gregory (1976) and Pindyck
(1979), found that capital and energy are sub-
stitutes. The implications of energy and capi-
tal complementarity is that ceteris paribus,
higher priced energy will not only dampen its
own demand, but also the demand for new invest-
ment in plants and equipment.

A number of avenues for reconciling these
conflicting empirical results have been explor-
ed in the literature. For example, it has been
suggested that the use of time series versus
cross-section data lead to different results;
studies that use time series data capture
short-run factor relationships while studies
that use cross-section data measure the long-
run factor relationships. Others have argued
that there is a need to disaggregate capital
inputs into physical and working capital. The
hypothesis is that while physical capital is
complementary to energy, working capital is a
substitute for energy. Others have stressed
the need to exclude taxes from the capital
working service price. Similarly, the need to
use four inputs instead of three has been sug-
gested. These and other arguments are reviewed
by Solow (1987).1

In this paper we examine the sensitivity
of the energy-capital complements issue by
estimating the partial Allen elasticity of sub-
stitution between inputs i and j (o0;:) under
stochastic constraints? on the coefficients of
the conditional input demand (CID) functions.
The stochastic constraints are imposed corres-
ponding to homogeneity and symmetry hypotheses;
the estimates of 0,.'s are obtained by using
time series data covering the period from 1947-
71. The data are obtained from Berndt and Wood
(1975). A novelty of this paper is the use of
the bootstrap (Efron, 1979) to estimate the
standard error of the estimate of 0;3. A case
for using stochastic constraints instead of
fixed (or exact) constraints has been made by
many researchers including Tsurmi et al. (1986)
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and Ilmakunnas (1986). It can be argued that
the use of exact constraints, which are a spe-
cial case of stochastic constraints approach
are both restrictive and unnecessary. Our ex-
amination builds on the papers by Freedman and
Peters (1984) and Ilmakunnas (1986) who have
used similar methods to those in this paper in
a different but related context. We estimated
o;;'s by the mixed estimation® (MR) method
(Theil and Goldberger, 1961) to show that the
estimates of o;; are sensitive to choice of a
key parameteric value in the stochastic con-
straints. This parameter may be interpreted as
a coefficient of stickiness towards homogeneity
and symmetry hypotheses. Our results show that
when the stickiness coefficient is assigned a
value higher than those in the sample the esti-
mate of oyp can be positive instead of nega-
tive. Further, its 75% confidence intervals
[BKE + téés SE (BKE)] fail to exclude a posi-

tive value for the &y either when the standard
error of EKE (SE) from the standard asymp-
totics or bootstrap (Efron, 1979) 1is used.*
This result shows that energy-capital substitu-
tability cannot be ruled out for this configu-
ration of the stickiness coefficient which
might be interpreted to reflect higher per-
ceived or real uncertainty, asymmetric informa-
tion or institutional stickiness faced by
firms. The confidence intervals of Oyg con-
tinue to include positive value of elaticity
when fatter-tailed errors are considered. The
fat-tailed errors are said to arise where
sample data include unusual events such as oil
price shock, oil emgargo, etc. (Taylor, 1983).

The paper is organized as follows: follow-
ing this section we present the model and des-
cribe the MR estimation technigue. In Section
3 we present the results and their discussion;
this section also includes a brief review of
the bootstrap idea. Final remarks conclude the
paper.

2, THE MODEL AND MR ESTIMATION METHOD
The CID

logarithmic (Cristensen et al
function are given by:

functions for the transdental
1971) unit cost

In w. + €.

FEBy Iy e

where S. is the cost share of input i repre-
senting labor (L), capital (K), energy (E) and




material (M) and the €; represent the error in
the ith equation. We assume that Ee;=0 and
Eeiej= Iis for all i and j = L, K, E and M. The
cost minimization hypothesis imposes the follow-
ing set of exact restrictions on the parameters

of the CID: (I) % B;; = 0; (II) By,= B.. for all
5 Fis ij
i# 3§ (I Loy =

The restrictions (I)lto (III) are commonly
known as homogeneity, symmetry and additivity
constraints on the CID functions.

The additivity constraints are easily in-
corporated into equations (1) by dropping one of
the share equations. We shall follow this con-
vention by dropping the material input equation
and wiring the remaining 3 equations compactly
as:

ji

(2) y = (I3X)B+e

where y is a 3nxl vector of n observations on
the input cost shares with y' = (SLI' SLZ' AR
Stns SKL' Sk2s .y SEn)' X is an nx5 matrix of
observations on variables on the right-hand
side of equation (1) with the t-th row X, = (1,
1n Vg In wge, 1In wgy, In wMt)' B is a 15x1
vector of parameters of the CID equations with
' = ("-L’ BLL' BLK' BLE’ BLM’ Qg s BKL' ceny BEM)
and € is a 3nxl vector of observations on the
errors., The vector € is assumed to be distri-
buted with 0 mean and covariance matrix Eee' =
Z @& I where I = ((Zij)) for i,j = L, K, E and M.
The stochastic constraints of the homogeneity
and symmetry constraints (I) and (II) can be
compactly written as:

<

(3) RB = u

where R is a 6x15 matrix whose elements are
specified by the homogeneity and symmetry con-
ditions, B is a 15x]1 vector of coefficients
defined above and u is a 6x] disturbance vector
such that Eu = 0 with Euu' = ¢ where & is a pus-
itive definite matrix. We follow Ilmakunnas
(1986) in using a convenient parameterization of
® such that ¢ = oh I; the parameter of repre-
sents the degree of stickiness towards homogen-
eity and symmetry. As o} approaches zero the
stochastic constraints tend to become exact con-
straints,

The MR estimator of B in (2) under stoch-
astic constraints (3) is given by

"
@ b=Glexxs+ ga R Gl x y
"

where £ = (Y - XB)'(Y - XB)/n is a consistent
estimation of !, Y is an nx3 matrix with t-th
row (SLt' Ske o sEt) and B is a 5x3 matrix of
coefficients of cost-shares equations for L, K,
and E, We estimate b's using an iterative meth-
od until the estimated values converge (see
Berndt and Wood, 1975).
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The asymptotic variance-covariance of b is
given by
peS
(5) v(b) = (3~
It is easily verified that the covariance matrix
(5) is also the mean square or risk matrix of b
since the stochastic constraints are assumed to
hold on the average (cf. Judge et al., 1985, pp.
58-59).
The estimates of %ij
the formulas:

8 X'X + 1/0} R'R)E

can be obtained from

(6) Bij = (bij + gigj) / Sigj for 1 # j
and . 2
N s oz E
(7) Oii = bii + Si Si/Si
where 3, and 5. are average values of cost

shares for inputs i,j = L, K, E, M and b;.'s are
the MR estimates of Bi-in the CID equations (1).
The asymptotic standard errors of oij's may be
obtained from

3,171

= [V(b;;)/5; 53]

~
(8  SE(3; ) ;

3. THE BOOTSTRAP IDEA AND MR ESTIMATES
3.1 The Bootstrap Idea

The bootstrap is a distribution-free method
of determining the accuracy of the parameters of
a model. The bootstrap theory is discussed in
detail by Efron (1979, 1982). A survey of the
bootstrap theory and applications is provided by
Efron and Tibshirani (1986).

The bootstrap standard error can be used for
calculating standard confidence intervals (CI) of
o;: from formula aij t t3f SE(3i~) where 3i- is

1) .
an estimator of the parameter °ij' SE(Bi-f is
the bootstrap SE of éi" and tgf is the 100a

percentile point from the t-distribution.
The bootstrap idea in the context of stand-

ard regression model E(y;) = B°+'§18 X; ymay be

described as follows. Suppose we have n obser-
vations on the dependent variable y and the
regressors (xl, Xyy even xp). Further, suppose
that the regression errors €; = y; - E(yi) for
i =1, 2, ..., n are from an unknown distribu-
tion F and that b's are least squares estimators
of B's. Then the bootstrap idea is to approxi-
mate an unknown distribution G(F) of b.-B., by
G(F,) where F, is the empirical distribution of
F for a given sample data set on the dependent
variable and its regressors.

Now, consider a large number of random
samples of size n with replacement, drawn from a
box containing the least squares residuals e,

e,, e, ... e,. Suppose one such sample is then




designated ef, e:, ej, ey e: effectively and capital are gomplements was, foundgnot to be
yielding the "pseudo data" for y from y* = b, violated when op = 10 andzoR =10 The MR

% estimates corresponding to Og = 107° correspond
+ Z LJ ij t 3 (i=1,2....,n). This "pseudo to the exact constraints case. The point and

dgta" along with the sample observations on the
regressors would then constitute a set of sample
values for the bootstrap empirical distribution.

In view of the fact that the least square
residual e's are not independent even though the
€'s have this property and that the e's are a
bit smaller than the e's, the bootstrap sampling
from e's can be downward biased. This bias can
be reduced by scaling up the e;'s by a factor of
[n/(n-p- l)] (see Freedman and Peters, 1984),.
We used a scaling factor in our bootstrap re-
sults reported below.

3.2 The Results

The MR estimates of o;: were obtalned for
tgree values of the stlcklness parameter UR :
og = 107%, o = 107 and op = 1078

However, we shall present the detailed re-
sults for o} = 1074 only in view of space limi-
tations. Moreover, the hypotheses that energy

Table 1:

L. -4
0. : when Og = 10

interval estimates of cij's for og = 10
given in Table 1.

The results in Table 1 show that the esti-
mates of ogp and opy are of opposite sign; thus
the energy-capital can be substitutes instead of
complements when the stickiness parameter is
equal to OR = 10~ But, the asymptotic stand-
ard error of OKE in column 3 and the bootstrap
standard error in column 5, which are the para-
metric and non-parametric measure of the accur-
acy of the estimator 955> respectively , are
large. Therefore, it might be worthwhile to
calculate the 75% CI to determine if the posi-
tive value of EKE is included in the CI. The
possibility of a positive value in the CI would
suggest that the hypothesis of energy and capi-
tal substitutability cannot be rejected at the
25% level. The 75% CI, in column 4 and 75% CIy
in column 6 represent the parametric confidence
intervals with SE(o;;), and SE(o; )b’ respect-
ively. These 75% CIs appear to 1nc1ude a posi-

The Mixed Regression Estimates of Allen Partial Elasticity of Substitution

1]
(3;) SE(3;5), 5% I, SE(3; )y 75% CIy,
1) orr -1.607 0.128 [ 1.694, -1.520] 0.103 [-1.677, -1.537]
2) ok 1.174 0.547 [ 0.803, 1.546] 0.476 { 0.851, 1.497]
3) OLE 1.427 0.828 [ 0.865, 1.989] 0.464 [ 1.112, 1.742]
4) LM 0.488 0.132 [ 0.398, 0.578] 0.088 [ 0.428, 0.548]
5) oL 0.770 0.424 { 0.482, 1.058] 0.336 [ 0.542, 0.998])
6) Oxk -6.391 2.095 [-7.813, -4.968] 2.141 [~7.844, -4,938]
7) g 0.941 3.660 [-1.544, 3.426] 2.761 [~5.934, 2.81€]
8) Sn 0.322 0.524 {-0.034, 0.677] 0.439 [ 0.024, 0.620]
9) %L, .009 0.363 [ 0.762, 1.255] 0.308 [ 0.800, 1.218]
10) Ok -3.444 1.556 [-4.500, -2.388] 1.617 [-4.542, -2.346]
1) O -12.260 3.356 [-14.539, -9.981] 3.194 {-14.429,-10.091]
12) Ok 0.491 0.431 [ 0.198, 0.784] 0.394 [ 0.224, 0.758]
Notes: Bij’ The point estimate of the Partial Allen elasticity of substitution
of factor input i with j.

SE(o1J a: The standard error of aij from the asymptotic formula.

75% °1,: The 75% confidence intervals with SE(&;;), and tgf® = .679.

SE(Bij)b The standard deviation of the bootstrap distribution.

75% CIy: The 75% confidence intervals with SE(gij)b and téés = .679.
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tive value of BKE‘ Hence, the hypothesis that
energy and capital may be substitute appear not
to be rejected by the data.

How does the existence of fat-tailed errors
affect the CI? We investigated this question by
reestimating the o 'S by the MR method with
fatter-tailed errors.” These errors were cbtained
as described below. Under the assumption that
residuals from (2) are normally distributed, we
generated a fatter-tailed error by mixing two
sets of normally distributed errors such that a
proportion (l-s) of original errors with 0 iean
and covariance matrix f2 = I B I were combined
with a proportion s of another set of errors
with 0 mean and covariance matrix dQ where d is
a scalar greater tham 1. The matrix of eicors
so obtained are distributed with O mean and co-
variance matrix Q(d) = (1-s) Q + s(dQ) and these
errors are fatter-tailed than the original
errors (see Flood et al., 1984). We used d=4
and s=2/25 such that the Kurtosis coefficient of
fat~tailed errors is about 1.64, The use of
fatter-tailed errors resulted in somewhat higher
SE(3; j)pcompared to those in Table 1. The 75%
CI were also computed and again failed to reject
t?e supifitutability cf energy and capital for
op = 10 7.

4, SUMMARY REMARKS

In this paper we examined the sensitivity
of the estimates of the partial Allen elasticity
of substizutions and theilr confidence intervels
when homogeneity and symmetry hypotheses hold
stochastically compared to exactly.

A simple parameterization of the covariance
matrix for the disturbance term in the stoch-
astic constraints was considered. It was shown
tgat for some a prio;i specification of op(i.e.,
op = 1074) where op has an interpretation as a
coefficient of stickiness towards homogeneity
and symmetry yield a positive estimate of oyg.
The 75% CI of oyp were computed using both
asymptotic SE and bootstrap SE and they failed
to exclude a positive value for oyp. Therefore
the hypothesis that energy-capital may be sub-
stitutes cannot be rejecled at level,
These results might be interpreted in terms of
the rationale given by Berndt and Wood (1979) in
terms of capital utilization.

. ~r
Lt evpm

FOOTNOTES

I One reason these avenues have failed to
resolve the controversy might be that their
studies use aggregate data which makes it diffi-
cult properly to capture the general equilibrium
effects f an energy price shock on business
(see Solcw~, 1987).

—»
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? Estimates of the parameters of the cost
function under stochastic constraints can be
carried out in either a mixed regression or
Bayesian framework. In this paper we will focus
on the MR approach.

3 The Mixed Regression model is a conven-
ien- econometric technique for combining in-
forration from a given sample with prior non-
sample stochastic information with a view to
obtaining a more efficient estimate of regres-
sion cuefflcients. The MR model has proven to
be useful if judged solely by the plausibility
of the results obtained from it, although the
assumptions it is based on are somewhat logic-
ally flawed (see Zellner, 1975). This method was
originally proposed by J. Durbin in 1953 and
later developed more fully by Theil and Gold-
berger (1961) on heuristic grounds. However, it
can also be interpreted as a Bayes estimator and
has been applied in areas of consumer demand

(e.g., see Paulus, 1975) and cost functions
(e.g., see Illmakunnas, 1986 and references
therein).

“ Efron (198.) has provided some evidence
for the relative performance of the jackknife
and bootstrap methods. He found that while both
jackknife and bootstrap standard errors provide
an almost unbiased estimate of the parameters,
the bootstrap method has a lower coefficient of
variation than the jackknife method.
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Dimensionality Constraints on Projection and Section Views

of

High Dimensional I.oci

George W. Furnas
Bell Communications Research

Abstract

Fundamental limitations are presented for two general graphical techniques for constructing geometric
views of high-dimensional loci, projection and section. Projections can only easily display aspects of
structure that are of low dimensionality . Sections, i.e, intersections of affine subspaces with a locus,
can easily display structure of only low co —dimensionality (and hence high dimensionality). However,
compositions of section and projection can display aspects of structure of any intermediate
dimensionality. These assertions are proven for fundamental idealization of loci that are arbitrary affine
subspaces of a high-dimensional space. The issues introduced by finite extent, by curvature, by
quantization and by error noise are then discussed, basically in terms of notions of scale. Examples of
using the composition technique are given, examining the structure of two high-dimensional objects

embedded in a six-dimensional space.

1. Introduction

The investigation of high dimensional loci arises in both
mathematics and statistics. In mathematics, sets of equations
and inequalities, or computational procedures can define
mathematical objects of high dimensionality. Graphics
provides one set of tools to augment algebraic attempts to
understand the structure of these objects. The typical
graphical approach is to make various 2-dimensional
projections and sections of the locus, from which some sense
of its structure is obtained.!) ) B [n statistics, multivariate
data form high dimensional point-clouds whose structure
must be detected and modeled. Again graphics are playing
an increasing role in augmenting parametric characterization
of the structure of such loci, particularly in the exploratory
stages of data anatysis!4) B} (6] 7} (81 91 [10) (11 (12} " mpo0h
statisticians sometimes use various glyph variation schemes'
for graphical presentation of multivariate data (e.g.,
Chemoff Faces"™), trees and "castles"!4]), geometric
transformations, usually projection, are also used to produce
two-dimensional renditions of high dimensional loci (e.g., 4
8) {11y This paper represents a basic attempt to understand
the theoretical power of views generated by such geometric
transformations.

1.1 A Motivating Example: The 4-point Ultrametric Locus

The inherent limitations of low-dimensional projections
can be illustratied by the 4-point Ultrametric Locus, a
particular mathematically defined locus embedded in 6-

Author’s Address: Bell Communications Research, Inc., 445 South
Street, Room 2M-397, P.O. Box 1910, Mormistown, New Jersey,
07960-1910 USA

The author would like to thank Andreas Buja, John Schotland, and
AdoMo Quiroz for their comments on drafts of this paper and its
related proofs.

1. Such schemesuse some “glyph”, such as an iconic face, whose vari-
ous graphical features (e.g., aspect ratio of the face, size of eyes, etc.)
are parameterized and associated with variables. Thus a set of points
becomes a family of glyphs.
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space. (This locus arises in efforts to understand the families
of distance matrices satisfying different metrics, e.g., general
metric, euclidean, ultrametric.'3) Its importance here is
simply that it is an interesting locus in six-space.)

Consider, for four points A, B, C and D, the vector of six
pair-wise distances between them:

(u,v.w,x,y,2) = (dag,dac.dec.dap . dpp. dcp ).

Of all possible (non-negative) sextuples of such
distances, consider only those that correspond to distances
satisfying the Ultrametric Inequality:

dij S max(dp,dy) i.jke {A.B,C.D}

Ultrametric distances are interesting because there is a
one-to-one correspondence between such sextuples of
distances and hierarchical clusterings of objects A, B, C and
D, or equivalently rooted ultrametric trees with these four
objects as their leaves. Thus understanding this locws
amounts to understanding the complete set of Ultrametric
trees on 4-points.

The set of ultrametric sextuples forms a locus (UM-
Locus) of some type embedded in the six dimensional space
of all sextuples. For various algebraic reasons, this locus
was known to have interesting structure. To get a better
sense of it in detail, one might try to "look” at it using a
powerful high-dimensional rotation and projection system,
such as The Data Viewer, developed by Andreas Buja and
his colleagues ['?! for looking at high dimensional
multivariate point-clouds. To do this, a point-cloud
representation of the locus was created by generating and
testing each point in the six-dimensional unit hypercube
whose coordinates were multiples of 0.10. Points on this
grid that satisfied the Ultrametric Inequality were collected,
and the rest ignored. The resulting six-dimensional point-
cloud was then entered into The Dara Viewer which then
dynamically rotated the locus and generated a continuous
moving sequence of two-dimensional projections. One such
projection is shown in Figure 1.
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Figure 1. 2-Dimensional projection of the 6-dimensional, *4-Point Ultrametric Locus’

The critical feature of Figure 1 is that it shows essentially
nothing interesting! The only visible aspects of the
structure are artifactual: e.g., the edges and comers seen in
the figure are the edges and comers of the hypercube that the
locus was sampled from and not special features intrinsic to
the structure itself.

Here is a graphical tool used frequently by statisticians,
sometimes with marked success, to look at high dimensional
loci. Yet for this Jocus, which is known to have interesting
structure, projection shows nothing. The work presented in
this paper represents an attempt to understand what is
happening in Figure 1, by addressing a simple, though
fundamental idealized case.

1.2 The Two Geometric Viewing Techniques

We will actually investigate two common geometric
techniques for deriving a low dimensional picture of a higher
dimensional locus: projection and section .

By a k-projection we will mean an orthogonal
projection of a high dimensional locus embedded in n -space
onto a k-dimensional affine subspace (e.g., onto a line,
plane, or general k-dimensional hyperplane, not necessarily
through the origin. Orthogonality is with regarc to the
canonical inner product on B~.) Most typically, this means
projecting from n -space onto some 2-dimensional plane at
some orientation in the n-space. This 2-projection is used as
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a 2D graphic, i.e., a picture on paper or in a video display.

By a k—section we will mean the intersection of a k-
dimensional affine subspace with the high dimensional locus
residing in n-space. A 2-section arising from intersecting
some plane in the n-space with the locus can be presented as
a sort of cross-sectional picture of the locus.

Although for simple graphics k=2, interest i the z2neral
case of k>2 is not jusi theoretical. There are ways to present
graphics that are more than 2-dimensional, e.g., using stereo
Fresentation. color and motion/time (e.g., 4! (21 (LT (121 (5T (61
71 {181 ) The results that follow should pertain to these
higher-dimensional graphics as well. Also, as will be seen, it
will be useful to consider the composition of section and
projection operations of various dimensionalities, and their
net effect can only be understood by considering the general
case.

2. The Affine Subspace Idealization

Imagine that a demon opponent presents an investigator
a n -dimensional black box that has a target object embedded
in it, and challenges the investigator to use
geometric/graphical techniques to discover what is inside.
The demon’s goal is to put in something hard: the
investigator's -- to figure what is there anyway. This fully
general problem is exceedingly difficult, so we consider here
a fundamental simple case: Suppose we allow the demon to




put only certain very simple high-dimensional loci in the
box: flars. By a flar, we will mean an arbitrary affine
subspace: a point, line, plane, or hyperplanes (not
necessarily through the origin). In particular, an m—flat will
mean an m-dimensional affine subspace embedded in n-
space.

Note that these special loci differ from loci of practical
interest in several ways. They are infinite in extent and high
translational symmetry (a line looks the same everywhere
along its length). In addition, unlike statistical loci (and
some mathematical ones in theory, and many in
computational practice), they are continuous. In this
difference resides the idealization: and we will try to return
across this gap at the end. In any case, flats are sufficiently
primitive and fundamental objects that understanding their
behavior has value in its own right.

Accepting for the while this restriction, the situations is
thus: the demon will put some target m-flat in the n -space,
and the investigator will try to use k -projection or k-section
to look at what is there. What will the investigator see?

2.1 Constraints on Projection Views

Consider first the case of projection , ie., "How does an
m-flat appear in a k -projection?” The answer tums out to be
quite simple:

The operation of k-projection will yield an image of
the m-flat that almost surely
® preserves dimensionality of a m-flar (i.e., m-flat
in n-space ==> m-flat in k -space), when m <k,
and
e is of full k dimensionality when m2k (thus
indistinguishably covering the k-dimensional
Viewing space).

Thus for example, a point (0-flat) in 3-space always
appears as a point (0-flat) in a 2-projection. Thinking of the
casting of a shadow as a projection, recall that the shadow of
a point is a point, regardless of its position in 3-space. It is
likewise true in n-space. Similarly, a line (1-flat) in 3-space
will almost surely appear as a line in a 2-projection; the
shadow of a line is almost surely a line. The italicized
phrase, almost surely, is being used in the technical
(measure theoretic) sense.’ That is, for example, it is
possible for a line (1-flat) to 2-project not into a line (I-flat)
but into a point (0-flat). However, this can happen only in the
singular case that line is perpendicular to the 2-flat used for
the projection (the viewing space). This singular case has
measure zero (i.e., zero probability if flats are chosen
randomly), and hence almost surely the 2-projection of a 1-
flat is a 1-flat.

2. Proofs of the dlmost surely asserions about dimensionality of pro-
jections and sections will be published elsewhere, and are also aval-
able in 7],

3. The almost surely statements here require only that undeslying proba-
bility distnbutions be absolutely continuous w.rt. the Lebesque
measure on the corresponding natural cuclidean parameter spaces.
For example coordinates of the nx(n-p) matrix detinng a p-
dimensional lincar subspace could be sampled from the standard
spherical multivanate normal on BR~1~-r). See the proofs for details.
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The projection operation cannot preserve dimensionality
of a target m-flat if m gets so large that it exceeds the
dimensionality of the viewing space. lllustrating this case
where m2k, note that a plane (2-flat) in 3-space will
almost surely 2-project onto the whole projection plane. The
whole 3-space (3-flat) will also 2-project to cover the whole
plane. The 2-projection alone cannot distinguish a 2-flat
target from a 3-flat one.

Thus if the demon puts a p-int or a line in the box, the
investigator can easily disclose it with an arbitrary 2-
projection, and thereby win. However if the demon sets as a
target a higher dimensional m-flat, all 2-projections will be
completely and indistinguishably covered.

A second look at the Ultrametric Locus of Figure | bears
out the results just given. The projection made visible only
0-dimensional features (point-like comers) and I-
dimensional features (line-like edges) of the locus.
Unfortunately these were artifactual aspects of the locus.
The interesting structure apparently was in the higher
dimensionality, and to the demon's gratification, was self-
obscured by the projection operation.

This means that projection is a powerful technique for
identifying low dimensional affine substructures in high
dimensional space, but almost surely useless in finding
higher dimensional ones. Put another way, if the affine
structure of interest is of low dimensicnality, essentially
ANY projection will show it clearly. If it is of high
dimensionality (where "high" is often only m >2, since
typical projections are 2D), only very singular projections
will show it. It is the struggle against this almost surely
condition that makes the pursuit of informative projections
(e.g.. in Projection Pursuit '81) so vifficult.

2.2 Constraints on Section Views

Fortunately for the investigator, the second tool available
for creating low-dimensional views, section, has a
complementary power. Considering the case of section, we
ask, “How does an m -flat appear in a & -section?”

The answer to this requires the notion of co —dimension .
The co-dimension of a flat is the complement of its
dimensionality with respect ra that of the full space. That is,
in n-space, the co-dimensionality of a m-flat is defined to be
i=n—-m. Thus the co-dimensionality of a plane in 3-space is
(3-2)=1, that of a point in a plane is (2-0)=2.

Whereas the effect of projection was put simply in terms of
dimension, the effect of section is put simply in terms of co-
dimension:

The operation of k-section will yield an image of an
m-flat that almost surely
e preserves the co-dimensionality of a m-flar (i.e.,
(n—i)-flat in n-space ==> (k-ir-flat in k-space),
when (n-m) < k, and
e is empty (1.c., indiscriminately missing m -fluts)
when (n-m) 2 k.

Let 1 be the co-dimension of the m -flat, ie., m=(n—-i).
If i=(n-m)<k then the (n~i)-flat almost surelv appears as
a (k~i)-flat in the k-section. Thus for example, in 3-space a
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line [=(3-2)-flat] almost surely appears as a point [=(2-2)-
flat] in an arbitrary 2-section. A plane [=(3-1)-flat]
almost surely appears as a line [=(2-1)-flat] in an arbitrary
2-section.

On the other hand, if is(n—-m)>k, it almost surely
disappears from the k-section. Thus in three space an
arbitrary 2-section will almost surely miss a target point
[=(3-3)-flat]. It will reveal the point only under the singular
condition that the viewing plane happens to be positioned
and oriented so as to pass through the point.

Thus if the demon puts a flat of co-dimension 0, 1, or 2,
(dimensionality n, n—1 or n-2) in the box, investigator can
easily disclose it with an arbitrary 2-section. But if the
demon sets a target of higher co-dimension, all the
investigators’ 2-sections will almost surely miss. So,
whereas projection is a powerful technique for identifying
structure of low dimension, section is useful for finding
structure of low co-dimension.

2.3 Complementarity and Composition
P y P

These previous properties of projection and section are
summarized in Figure 2 for flats in  6-space, the
dimensionality of the black box containing the Ultrametric
Locus of Figure L. If the affine structure of interest is of low
co-dimensionality, essentially ANY projection will show it
clearly. If it is of low co-dimensionality essentially ANY
section will show it. Thus these two patterns of strengths are
complementary. However, even the union of the two
techniques is still limited. Given that one seeks only two-
dimensional pictures, so that k=2, projection can find
substructures of dimensionality 0 and 1, and section can find
dimensionality n, n—1, and n-2. In cases where n<4, this
covers all the cases. But for larger n, there is a gap between
the low dimensional and low co-dimensional extremes, and
so the demon can still win.

6-Space
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Figure 2.  The joint capabilities of section and
projection.
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Fortunately, composition of these techniques can
completely bridge the gap. For example, consider the
problem of finding a 3-flat in 6-space, using a k=2
dimensional viewing space. Neither single approach will
find it:  Since m=3>k=2, it will almostsurely
indiscriminately ~ cover  2-projections, and  since
n-m=6-3=3 > k=2, it will almost surely not appear in 2-
sections. How can an informative 2D view be created?

Following Figure 3, note that a 4-section of the 6-space
will almost surely contain an image of the 3-flat, since
n-m=6-3=3 < k=4. Since section preserves co-dimension,
the (6-3)-flat will become a (4-3)-flat [=1-flat] in the 4-
section. Thus we have a section that at least contains some
image of the target. The problem is that a 4-section is not a
2D picture. That is easily solved by taking a 2-projection of
the 4-section. The 4-section is now a new 4-dimensional
black box with a 1-flat target in it. Correspondingly let
n’=4, m'=l and k’s=l  Thus, since m’=l < k’=2,
dimensionality will be preserved by the projection, yielding
aclearly visible 1-flat (line) in the final image. That is, if the
investigator takes a 2-dimensional projection of a 4-
dimensional section of a 6-dimensional spuce, and sees a
line, she has just found a 3-flat.

6-Space 4-Section 2-Projection
S
w |6 2%

E *

g 5 2

* |

5 | ¢ 2
; 3 b1 | tine
c |2 ) point
= ]

o |1

g |0
E
o
Figure 3. Effects of a 4-section followed by a 2-

projection, and the remaining gap.

By similar combinations, the investigator can reveal an
arbitrary m-flat. E.g., it will almost surely appear as a line
in a 2-projection of a (n—m+1)-section. Equivalently, the
m-flat target could be revealed by ar alternative
composition, taking a 2-section of a (m-1)-projection. In
either case the investigator can now always beat the demon.

It should be stressed that when used as suggested by the
constraints discussed here, m-flat structure can be tound
WITHOUT SEARCH through the orientation and location
parameters of the section and projection operations. The
“almost surelv” considerations mean that sections and
projections of arbimrary positions and orientations should
yield the desired result. One must only examine at most n 'k
k-dimensional  views. Each  corresponds  different
dimensionalities of the initial j-section
U=n,n-k.n-2k n-3k, k), which precedes the final k-
projection in the composite strategy.




3. Two Examples

The previous theory is based on the idealization that the
demon can only use flats as targets, yet real loci can deviate
from this idealization in many ways. Before considering
such deviations in detail, we will first present some examples
to show that the technique holds promise even for real loci.

Views of the loci in this section were again generated
using The Data Viewer 1o do 2-D projections and
systematically using its "brushing” facility compositely to do
sections. (Note that a p-dimensional brush, ie.,
conditioning on a linear combination of p variables leaves
n-p free to vary, creating a (n~p )-dimensional section).

3.1 Example 1: The 3-point Ultrametric Locus revisited

In this example the composition of section and projection

is used to get a more informative display of the Ultrametric

Locus. An arbitrarily oriented 2-projection of the full locus
was presented in Figure 1.

Figure 4. A 2-projection of a 4-section of the
Ultrametric Locus.

Figure 4 presents a 2-projection of a 4-section through
the locus (the same 2-projection as in Figure 1, so Figure 4 is
actually embedded in Figure 1.) The result is a 5-segment
tree structure. Essentially all such sections have this
structure (Figure S5 shows another completely different
section and projection.) These trees are made up of 1-flat
pieces.
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UM

Figure 5. Another 2-projection of a 4-section of the
Ulrametric Locus.

Working backwards through Figure 3, we can see that a
1-flat image in a 2-projection of a 4-section corresponds to a
3-flat in the embedding 6-space. That is, the locus is an
articulated tree-like collection of 3-flat pieces. Further
investigations can show that there are three distinct though
connected sets of these 5-segment images.

All of these results are consistent with what is known
about the set of ultrametric distances on four points. It has
been mentioned that such distances comespond to distances
in rooted binary trees on four points. There are 15 different
such binary tree topologies, one associated with each of the
segments of the three 5-segment shapes in the figures. Each
of the 15 tree topologies has three continuous parameters
that affect distance: the distance matrix is altered in a
continuous fashion by changing the heights of the three
internal nodes of the rooted binary tree. This explains the
local three-dimensionality of the locus as revealed in the
line-like appearence in the 2-projection of the 4-section of
Figures 4 and 6. The composition of section and projection
yields a powerful look at this articulated high dimensional
object, even though it is not simply a flat.

3.2 Example 2: A three dimensional torus in 6 dimensional space

The second example examines a curved object, a three
dimensional torus in 6 dimensional space. Such a torus is
simply the Cartesian product of three circles. Le., the set of
sextuples (4, v,w,x,y,z)such that

u2 +v2 =1
w2 +x2 1
y2 +z2 1.

Note that these three equations define a 3-manifold
embedded in 6 space. This continuous object was turned into
a point-cloud by taking 10 points around each circle. The
Cartesian product thus yielded 1000 points. Figure 6 shows
four simple 2-projections of the resulting toroidal cloud in 6
dimensional space. Note that beyond a general curved
convex appearance, the special character of the structure is
obscured in these simple projections.
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Figure 7 shows four corresponding 2-projections-of-4-
sections of the torus in 6 dimensional space. The
fundamental circular structure is clearly visible and,
referring back to the diagram of Figure 3, the appearence of
the locus as curves in the viewing plane evidences its local
3-dimensionality.

4. Deviations from the Idealization

The previous two examples illustrate how the earlier
ideal theory seems to extend to less ideal cases: both the
limitations of sections and projections and the possible
power of their composition are manifest. In both of these
examples, as in many real situations, the high dimensional
loci of interest differ in many ways from the idealized case
of affine subspaces. In this section several of these
deviations are discussed, with the principal conclusion that
once a suitable level of scale is determined, ideal results
remain useful, thanks to the robustness of linear
approximations. The treatment here is casual and
conjectural; other’s efforts at formalization would be
welcome.

4.1 Finite Extent

Many mathematical loci and (presumably) all empirical
statistical ones are bounded in extent. To begin to
understand the implications of boundedness, consider first
the simple case of bounded pieces of m-flats. Since real
viewing windows (paper or CRT screens) are also bounded,
the relative scale of the target and viewing bounds is
important. In particular, on sufficiently large scale (i.e., the
target object is much smaller than the window), an m-flat-
piece becomes point-like and projection will show it. On a
sufficiently small scale in its neighborhood, the m -fiat-piece
becomes like an m-flat. Then the previous techniques of
section and projection should work as described. Thus the
viewing process requires an additional tool which can
rescale the object with respect to the window size.
Projection is first used at large scale to locate the object as a
point-like entity. Then scale is reduced while staying
centered on the object until the object looms large with
respect to the window bounds, whereupon section and
projection can be used.

4.2 Non-Linear Loci
4.2.1 Manifolds

Like the second example above, many interesting loci
are manifolds that are curved, not flat. Technically, however,
any manifold appears increasingly flat when viewed more
and more locally. Thus the earlier results should hold with
respect to the image of all local regions under section and
projection. For example, the image of a 2-manifold in 3-
space under 2-section should almost surely be locally 1-
dimensional. But something which is locally 1-dimensional
is a l-manifold. Thus the results should generalize to
manifolds, with a further caveat: The almost surely
condition here means that sometimes there could occasional
local alteration in dimensionality -- singularities can be
introduced.

For a simple example, consider how best to tell a hollow
sphere from a solid one. One is a 2-manifold in 3-space, the
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other a piece of a 3-flat in 3-space. Since the distinction
between these is not one of low dimensionality; they will
look the same in projection. They differ with respect to low
co-dimensionality, so only section ca.. distinguish them.
One will appear as a ring (I-manifold) the other as a disc
(piece of a 2-flat). - One could by similar means distinguish
hollow and solid hyper-spheres. Topographic maps are
another interesting examples of the implicit application of
this theory. The surface of a piece of terrain is essentially a
2-dimensional manifold in 3-space. Its structure is of co-
dimension 1 and cannot be conveyed in a 2-D map by
projection. Instead topographic contours, i.e., a family of
2-sections, display its shape -- as curves (structures of co-
dimension 1) in.the image plane.

4.2.2 Hyper-surfaces with singularities

The investigation of general m-surfaces, i.e., surfaces
that may have singularities is more problematic. First note,
though, that singularities are structures of lower
dimensionality, p, where p<m. If one can partition the
structure  apriori  into  singularity-substructures by
dimensionality, then each dimensionality can be examined
according to the preceding treatment of manifolds. If no such
partition is available a priori, the situation is more difficult.
The problem is that structures of different dimensionality are
present at the same time and can obscure each other.
Singularities of dimension p=m—1 can be seen along with
the m -surface by section and projection. They will appear as
O-dimensional singularities on a I-manifold, e.g., like a
cusp-point on a bifurcating curve. However if p <m~1, the
singularities will either be lost by &-sections if £ is small
enough to clearly reveal the m-structure, and obscured by
the over-projecting m -structure, if & is large enough not to
miss the p-structure. A simple example of losing the
singularities is the inability to see the exact location of
mountain peaks (singularities of co-dimension p=3=m-2) in
a topographic map. The 2-sections generating the contours
almost surely miss the exact peak location -- hence the need
for a special map symbol to mark them.

4.2.3 Intersections and Unions

Some objects are defined by the intersections and unions
of simpler loci. Convex polytopes, for example, are defined
by bounding linear pieces. We simply note that the resulting
boundaries and joints may be thought of as singularities and
understood as in the previous subsection. Note that usually
these singularities are cleanly nested by dimensionality, and
may possibly be teased apart into a partition a priori.
Despite the problems of seeing all levels of singularities, the
first example in the previous Examples section shows the
usefulness of applying section and projection to a structure
made up of quite a few jointed flat pieces.

4.3 Quantization

Many objects of interest are not piecewise continuous,
but are made up of collections of isolated points. This is the
typical case in statistics, where empirical multivariate
distributions are made up of a set of observed data points. Tt
is also typically true for computer renditions of continuous
mathematical objects: the object is approximated by
quantized sample. The point-cloud composition of such loci




is no problem for projection, since it will preserve the image
of points. (The projection of a point-cloud is still a point-
cloud.) It is a problem for section, however, since a random
section will almost surely miss all points in a finitely dense
sample. There are several possible solutions that may work
in various circumstances.

The first approach is to select sections carefully, so as to
insure that they go through points. This might be possible,
for example if the locus is generated by sampling in a
regular grid. This was the solution used for the example loci
of the previous section. Caution is needed, however, since
some such convenient sections may be singular (ie., w.r.t.
the almost surely conditions). Also new aliasing artifacts
may be introduced, since the section operation will amount
to a yet-more-sparsely sampled version of the true section
image.

A second solution available in some mathematical cases,
is to generate the section loci explicitly. That is, instead of
generating a sampled version of the full object and trying to
section it, it may be possible to first specify the parameters:
of a sectioning hyperplane, and then explicitly generate a
version of the object exactly as it intersects that hyperplane.

A third solutien is to try to "smooth” the locus in some
sense, that is by interpolating between points in some local
region to make a continuous approximation which can be
treated directly.

A fourth solution is to make "fat” points, i.e. make the
points in the cloud spheres of finite radius, so there is a finite
chance of hitting them with a section.

A final solution involves taking “"thick” sections, i.e.,
ones with finite volume so that they can intersect some of the
points. A “thick” section would capture all points in the
locus within some distance, 9, of the sectioning hyperplane.
This would be accomplished by intersecting the locus with a
generalized cylinder, the Cartesian product of a m-flat and a
(n-m)-sphere of radius 9, and projecting the intersection set
onto the m—flar. It is the final projection operation that
maintains the visibility of the points.

The success of any of these methods depends on scale:
the scale of quantization must be sufficiently small w.r.t.
scale of meaningful structure. This will help prevent
aliasing problems in all the methods. It keeps the notion of
neighbors simple for smoothing. With thick sections, it is
what may make it possible to find a thickness, 9, that is
sufficiently larger than scale of quantization that slices will
not usually miss points, yet smaller than scale of structure
so that the thickness will not blur the global structure. Of
course if the scales of quantization and structure are too
close together, then there are intrinsic limits on the adequacy
of the rendition in the full space. How much more latitude is
needed for section and projection is not yet clear.

4.4 Noise

A final deviation from the idealization is noise.
Empirical statistical loci typically have the structure of
interest obscured by noise, i.e., random perturbations of the
positions of the points. Again scale seems the key: If the
scale of the noise is small with respect to that of meaningful
structure, then there should be no serious problems. If the
scale of noise gets too large, then the structure’s image under
section and projection may be obscured. But in such cases,
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one might argue that the "true” shape of the locus has
become problematic in a more theoretically fundamental
way.

§. Discussion

This paper has examined some formal capabilities of the
two geometric transformations section and projection. It was
shown that they have complementary strengths and
weakness in revealing structure of various dimensionality,
and that together they form a powerful composition.

Although the systematic joint use of section and
projection should help the investigation of high dimensional
loci, a number of difficulties remain. The challenges
presented by singularities of codimension, p<m~1, and
quantization effects have already been mentioned. By far the
most  important outstanding problem regards the
comprehensive assessment of shape. Section and projection
are certainly among the fundamental graphical tools for
getting relevant information, but the geometry of higher
dimensions is fantastically rich, and even the most
informative individual 2-D images can only capture
glimpses of aspects of the shape.

Thus there are at least three important major directions
of future research. The first involves getting the most from
each low dimensional image, which requires understanding
what these transformations do to a variety of features of a
locus. The feature of dimensionality was the focus of this
paper. Examples of other important aspects (with some
conjectured results given in parentheses) are: what do the
transformations do to simple aspects like distances
(projection shortens but never lengthens them; section
preserves them), angle, position, and orientation; convexity
(preserved in both), polytopality (preserved by both -- but
what about the number of faces, etc.), connectedness
(preserved in projection, but not section). A systematic
understanding of these will enrich the ability to understand
how a given picture relates to the object pictured.

A second direction for future work is how to make use of
other techniques, such as projections that preserve density
information, probing (a technique closely related to
projection), the use of regular sampling grids, etc.

The third major direction involves the efficient collection
and assembly of multiple glimpses to capture the whole
structure. There has been considerable work on algorithms
for the assessment of shape from projections, motivated by
the field of tomography (!9} (201 21l There has also been some
general work on inferring shapes of polytopes using
probingm]. Further work, encompassing both section and
section-then-projection will be needed.

An additional, independent issue, concerns the
psychological aspects of high-dimensional visualization.
The formal treatments can explore the question about what
kind of information is theoretically available from various
tools, information that could be used by some arbitrary
intelligent machine. It is a further question what kind of
information can be captured and integrated by human
intelligence, for example to support useful valid inference
about the locus as a result of the low dimensional views.
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A DEMONSTRATION OF THE DATA VIEWER

Catherine Hurley

University of Waterloo

ABSTRACT

We have designed and implemented @ program called data viewer for explor-

ing multivariate data sets. The program produces plots moving in real-time

by projecting onto a sequence of user-controlled planes. Multiple plots may

be simultaneously controlled, allowing dynamic comparisons of data sets.

In this presentation, we demonstrate the data viewer by describing and

interpreting a selection of plots.

1. Introduction

Recent computing advances have encouraged the
development of new data analytic methods, many of
them graphical in nature (Cleveland 1987). We have
been concerned with graphical methods for analyzing
multivariate data. Typically, multivariate data is
projected onto some low (one or two) dimensional
subspace prior to display. Motion graphics present
us with one way of improving on the resulting display
-~ simply show a new projection every fraction of a
second. The PRIM system of Fisherkeller, Friedman
and Tukey (1974) was an early demonstration of this
technique; they used motion to display a rotating 3-d
point cloud. Programs for 3-d rotations have become
widely available in the last few years. In our data
viewer program, we go beyond 3-d rotations and use
motion to display data sets with arbitrary numbers of
Briefly, the

plots by projecting the observations onto smoothly

variables. program produces moving

changing sequences of planes. This presentation
demonstrates the data viewer by describing and

interpreting a selection of plots.

As background, we mention some important aspects
of the data viewer design. These will be illustrated

thronghout the sections which follow.

e Constructing moving projections
We consider 2-d projections displayed by a scat-
terplot, and 1-d projections displayed with a
marginal density estimate. Changing the projec-

tion results in a moving scatterplot or density
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plot appearing on the screen. With the data
the the

projections, that

sequence of
he/she

choose particular projections for display.

viewer, user controls

implying also may
The
projection sequence is constructed by interpolat-
ing between consecutive elements of a user-
chosen sequence of target planes. For more
details, see Hurley (1987), Hurley and Buja

(1988).

e The user-interface

Real-time, rather than animated, motion is

preferable for analyzing data. All data viewer
plots are produced in real-time, which calls for
For

program with a graphical

real-time user-controls. this
equip the

interface, where the user communicates with the

reason, we

user-

program by pointing a mouse at some part of the
data viewer display, and depressing a mouse but-
ton. Further details are given in Buja et al

(1987), Hurley (1987).

2. The data viewer window

The data viewer program produces plots in some area
on the screen which we refer to as a data viewer win-
dow. Figure 1 shows one such window, displaying a
view of the St.Helens data set. This data set con-
tains 680 observations on earthquakes occurring in
the vicinity of Mount St. Helens, during May, 1980,

where the quantities recorded are date, latitude, long-

_




itude, depth and magnitude.

There are a fixed set of items appearing in a data
viewer window. These are a plot, a title, the variable
boxes on the left hand side, a control panel in the
lower left corner, and a plot interaction menu lying
next to the control panel. Each o, these itcms
displays some information relevant to the user. In
addition, the items are mouse sensitive, and respond
to mouse clicks by changing their appearance. Most
user-program interaction occurs in this way. For
example, by clicking on various parts of the control
panel, the user controls some aspects of the scatter-
plot motion, such as the speed, and direction (for-

wards or backwards).

ST.HELENS

G| [

Figure 1: A data viewer window

In figure 1, the boxes for date and latitude have

horizontal and vertical lines drawn from their
centers, telling us that the displayed plot is a bivari-
ate scatterplot of date and latitude. A variable
box has a label X, Y, A or blank appearing on the
top left hand corner. These labels have a special pur-
pose -- they determine which projections may be
shown. An A label signifies that the variable is
active and may appear in the current projection.
With an X { Y) label, the variable is allowed to have
a projection coefficient for the horizontal (vertical)
direction only. No label indicates that the variable is
inactive, and so has zero horizontal and vertical coef-
ficients. MNouse clicks in the variable hoxes are used

to change the labels.

The plot interaction menu controls the style of plot
interaction, where the current possibilities are point
identification, shifting and sealing of the plot axes
(see Buja et al, 1987) rotation of the plot in the

plane, and moving projections. For instance, when
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point identification is the current selection, clicking
near one of the point symbols causes a label to
appear. In the examples presented here, we are con-
cerned with moving projections, so the plot interac-
tion menu shows "PROJECTION". This implies that
clicking in the plot region causes a moving proiection

to appear.

ST.HELENS

(osche” ]

Figure 2: A density estimate

The data viewer program also displays 1-d projec-
tions, by plotting a marginal density estimate for the
projected observations. For example, figure 2 shows
a density estimate of latitude. (The density est,

mate is an average shifted histogram {Scott 1985).)
As in figure 1, the box for this variable has a horizon-
tal line and an X label. Since the plot shows a 1-d

projection, there is no box with a vertical line.

3. 3-D Rotations

In figure 3(a), we have picked out the 3-variable sub-
latitude, longiltude
depth, by marking their respective boxes with A
labels. The pair of variables latitude and depth
are in the plane of the screen, while the third. long-
Notice that

space consisting of and

1tude, is perpendicular to the screen.
the mouse cursor is positioned on the right hand side
of the scatterplot. With a left mouse click at this
position, the point cloud rotates towards the mouse
cursor. More precisely, the point cloud spins in the
direetion given by the center of the plot region and
the cursor position. A mouse click in the plot region
as the points are moving stops the motion. The next
click restarts the rotation, in the dircction specified
by the current position of the mouse cursor. With
these controls, the user can spin a 3-d point cloud in
any direction. Figure 3(b} shows a picture of the

data viewer window after some point cloud rotations.




Notice now that lines are drawn in all three lati-
tude, longitude and depth boxes. The lines are
in fact the projections of the three coordinate axes.

-

ST .HELENE

ey

ST HELENS

e ) . I

Figure 3: 3-D rotations

4. Linking for close-up views

All of the plots shown so far demonstrate that earth-
quake locations are highly concentrated, so that it is
For

this, separate plots of the high-density region are

hard to see the structure of the dense cluster.

necessary. Suppose the data set St.Helens-dense
contains the subset of cases in the high-density
region. To view this subset separately, we may con-
struct a second data viewer window. Figure 4 shows

two data viewer windows, cach for the

St.Helens and St.Helens-dense data sets. In

one

both windows, the cases belonging to the dense sub-
set are drawn with square glyphs, while the remain-
ing points have hollow circular glyphs. By comparing
the lines drawn in the variable boxes, we see that the
two windows show the same projection. This implies
that the scatterplot in the lower window is a "close-

up” of the upper scatterplot.

As before, pointing the mouse cursor at the plot
region in the upper window and clicking causes the

point cloud to rotate. However, this time the point

110

cloud in the lower window also rotates, and in the
same direction. This is because the second window
was constructed in a special way, in order to link it
to the existing window. In this case, simultaneous
motion of the two scatterplots permits a dynamic
data set comparison, because the second window

displays Juroughout a ciose-up of the firse.

ST.HELENS

[roe u v o

ST.HELENS-OENSE

Figure 4: A close-up view

5. Connecting plots

Figure 5 shows a data viewer window for the Places
data set. This data consists of scores for 399 US
citics on 9 criteria, chosen to measure "livability" of
the cities (Rand McNally 1986). The nine criteria are
climate, housing, health care, crime, transportation,
education, the arts, recreation and economics. For
housing and crime, the lower the score the better,
For all other variables, the higher the score, the
better. Three included,.
namely, population {transformed to a log scale), lati-

tude and longitude for each of the 329 cities.

additional variables are

The upper plot, figure 5(a) gives a bivariate scatter-
plot of latitude and longitude. The two "extra"
points on the feft hand side of the map represent
Anchorage, Alaska, and Honolulu, Hawaii. Their lag-

tude and longitude coordinates have been adjusted so




that all cities fit nicely into the plot region. The
middle plot shows a bivariate scatterplot of climate
and

housing. Instead of changing the display

from one bivariate scatterplot to

immediately
another, we can gain a lot of information by watching
a smooth progression from one scatterplot to another,
and hack azain. We eall this connecting the scatler-
plots. In this way, we discover which U.S. cities have
good or bad climate, and expensive or cheap housing

prices.
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Figure 5: Connecting scatterplots

We construct the sequence of projections which con-
nect the scatterplots shown in figure 5(a) and (b) as
follows: Suppose the window currently displays ¢11~
mate and housing, and we pick longitude and
latitvude as the target plot. Motion resnmes with a

click on 2 mouse button, proceeding from the current
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to the target plot. Briefly, the horizontal projection
vector rotates in the climate, longitude plane,
while the vertical projection vector rotates simultane-
ously at the same rate in the housing, latitude
plane. When the projection reaches the target.
motion pauses momentarily, and then resumes back
the The

displayed projection continues to cycle between these

towards climate, housing plot.

two scatterplots until the user intervenes.

The third plot in figure 5 shows one of the intermedi-
ate projections. From the variable boxes we see that
both climate and longitude have non-zero pro-
jections in the horizontal direction, similarly, hous-
By
watching the smooth progression repeatedly between

ing and 1latitude in the vertical direction.

the pair of scatterplots shown in figure 5 (a) and (b),

we gain the following information:

o  The cluster of points with the best climate are
ali Californian cities. They also have high hous-
ing prices.

e Highest housing costs are in the vicinity of Now
York. (The two points with very high scores on
housing are actually Connecticut cities).

o The mid-west has the worst climate: Minnesota,

Wisconsin, and the Dakotas.

8. Linking to compare transformed data

Some of the ratings, in particular the-arts and
health~care, give extremely high seores to the big-
gest cities-- New York, Chicago and L.A.. This
results in scatterplots where most of the observations
are clustered together, so that associations between
variables are hard to pick out. For this reason, rat-

ings are transformed to normal scores.

Figure 6 shows two data viewer windows, the upper
one with the rating variables as before, and the lower
one with the normal scores. Both windows display a
density estimate for a linear combination of the rat-
ing variables. The linear combination is the same
since the data viewer windows are linked by common
projections. Notice the dot on the extreme right in
the upper plot; this is New York. In the lower plot,
As the

projection vector moves in the space spanned by the

New York lies far closer to the other cities.

X-variables, we see how the transformation to normal




scores affects marginal distributions. The density
estimate in the lower window is generally symmetric,
and quite often looks "bell-shaped”. For the
untransformed ratings, the 1-d projections have
highly skewed distributions. With a moving x-vector,
the density's peak shifts to and fro across the screen.

i

Figure 6: Comparing transforined data

7. Predictor-response plots

Most of the nine rating variables tend to assign high
values to big cities. To judge the overall nature of
the association between population and the ratings,
we examine plots of population against linear combi-
nations of the rating variables. Suppose we pick
population as the single Y-variable, and make each
of the-arts, health-care, economics, educa-
tion and recreation X-variables. (From the
bivariate scatterplots, these five have the strongest
individual associations with population.) Then,
motion yields a plot of population against a chang-

ing linear combination of the five X-variables.

By watching the moving scatterplot, we discover a
projection with high x-y association, as shown in fig-
ure 7(a). We can see that populatlon is linearly
related to a weighted average of the five selected rat-
ing variables. Also, health-care and the-arts

have the largest coefficients, whereas the coefficients
for economics and recreation are comparatively
small. (The variables have been transformed to nor-
mal scores, so that it is reasonable to compare their

projection coefficients.)

Do the variables economics and recreation have
a negligible contribution to the x-v association in tha
above projection? We may answer this question as
follows. Suppose we deactivate the two variables
economlcs and recreation, thus requiring them
to have zero projection coefficients in succeeding tar-
get planes. In particular, the x-vector for the next
target will be the current x-vector orthogonalized
with regard to the two deactivated variables. With a
rotation towards this target, we receive a visual
impression of how tli- quality of the X-y association
deteriorates (if at all), as the coefficients of the two
variables shrinks to zero. The second plot in figare 7
shows the projection onto the new target. Overall, it
looks very similar to the previous plot, with most
changes occurring among cities with lower popula-
tion. As far as the eye can Judge, economics and
recreatlon do not contribute to the x-y association
observed in the upper plot.

places nscores

Figure 7: Exploratory regression
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8. Data derived variables

The data viewer can also display plots of principal
components, canonical variates or the linear discrim-
inants. Indeed, the user may choose any linear com-
binations to form additional variables, but as a rule,
data derived combinations will be the most useful.

i PLACES I~
I~ . a
N L S Nt
s TR s
xh—- . . .”\‘.i.‘.'. ot ., < \/<

YN s "0 s o o
(IO et o2 Q\J
T e T
] oo pra
@m . Y
= T

Figure 8: Plotting linear discriminants

Figure 8 shows a data viewer window for the Places
data, with additional boxes on the right hand side for
some new \v.riables. In this casc, the new variables
were obtained by performiug a discriminant analysis
using the nine ratings, where the cities where rlassed
by location into (i) west coast states plus Alaska and
Hawaii, (ii) Rocky mountain states, (iii) mid-west
states, (iv) south-west states, (v) south-east states
and (vi) north-east states. The purpose is to discover

how the ratings vary across locations.

The user first marks each of the location groups with
a different plotting symbol, and then asks the data
viewer to compute the discriminants on the basis of
the ratings. When the calculations are complete, the
data viewer redraws its window, with more boxes on
the r.h.s. for the derived variables. The additional
boxes are ordered column-wise, and labeled discr-1
through discr-5 for the discriminants, rest-1 ..
rest-4 for some dummy variables, and followed by
population, latitude and longitude.

Now the user can specify (moving) projections in
terms of either the Lh.s. or r.h.s. variables. Figure 8
displays a projection obtained by performing 3-d
rotations in the space spanned by the first three
discriminants. This projection gives good separation
of the west coast and north-east states in the hor-
izontal direction. For a clearer presentation of the

two groups, they are marked with large squares and
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open circles respectively, while cities in other regions
are not shown. The Lh.s. boxes show which rating

variables contribute to the separation. Note that

e climate has a large positive coefficient in the
horizontal direction; since west coast cities lie to
the right of east coast cities in the scatterplot,
this implies that the west coast has better cli-
matc.

e Health-care and education have moderately

but
Therefore, it seems as if east coast cities offer

sized, negative, horizontal coefficients.

superior health-care and education facilities.

e Recreation, transportation and econom-
ics have little or no impact on the separation

observed.

9. Conclusion

This presentation aimed to illustrate some of the
capabilities of the data viewer program, through
With a

system which relies so heavily on real-time motion

describing some of the displays produced.

and real-time graphical interaction. a textual descrip-
tion of a few static plots is at best a poor substitute
for a "live" demonstration. However, we would hope
to have convinced the reader of the potential of data

analysis tools such as data viewer.
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ABSTRACT

By means of para]l;l coordinates 2 non-projective mapping between subsets of RY into subsets of
R? (ie. 28" = 2R%) is obuined. In this way not only N-tuples but also relations among N
variables, for any positive integer N, can be visualized in terms of their planar images. These
planar diagrams have geometrical properties corresponding to some properties of the N-dimensional
relation they represent. Starting from a point « - line duality when N =2, the representation of
lines in RY is given and illustrated by an application to Air Traffic Control (i.e. for RY. It is
followed by the representation of hyperplanes, and more general hypersurfaces. There is an
algorithm for constructing and displaying any interior point t0 such a hypersurface showing some
local (i.e. near the point) properties of the hypersurface and information on the point’s proximity 10
the boundary.

Introduction

Other than a superficial similarity to Y
Nomography Parallel Coordinates were first
formulated in 1978 with the first report appearing l
in 1981 (see [12]). They provide a methodology for )

visualizing not only N-Dimensional points but also N

N-Dimensionai Hypersurfaces (i.e. relations among ; Gt Cy
N variables) for arbitrary N the method being the G / /
same for every N. Other methodologies (but not .

suited for multivariate relations) are well known \Q C"ﬁ

(see [1], [2], [4) and the bibliographies in [S] and < \
[15), for example). Some applications of parallel c'ﬂ-‘
coordinates can be found in [6], (7], (12], (13], [15],
{16}, {17] and (18].

-

N % X X X X Xn-z Xy-; Xy
On the plane with xy-Cartesian coordinates, and
starting on the y-axis, N copies of the real line, Figure 1: -- Parallel axes for RN,
labeled x;, x2, ..., xy, are placed equidistant and
perpendicuiar to the x-axis. They are the axes of The polygonal line shown represents the
the parallel coordinate system for Euclidean N- point C=(cy,
Dimensional Space R¥ all having the same positive
orientation as the y-axis --see Figure 1. A point C

ves Cim1y s Cigl s ooy N ).

with coordinates (¢, ¢z, ..., cy) is represented by

Parallel Coordinates
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the polygonal line whose N verticesareat (i—=1, ¢,)
on the x-axis for i=1, .., N. In effect, a 1-1
correspondence between points in RY and planar
polygonal lines with vertices on x;, x3, ..., Xy IS
established. A convex hypersurface in RY is repre-
sented by the envelope of the family of polygonal
lines representing all peints on the hypersurf%cc (se
[3]). In short, a non-projective mapping 28 - 28
is established. The key idea is that the descrintion
of a higher dimensional object is captured, to a
considerable extent, in the 2-dimensional represeniation
of the envelope of the polygonal lines representing
its points.

Points are denoted by capitals and lines (or arcs of
curves) by lower-case letters respectively. In parallel

[ X2
/]
£ (
— —= X X1
X X0 I
by I X5

_ z(_d_,_tz_)
(0,02 ){d.ma,+b)[ Az 7"\ —m t~m (a,.ma,+b)

d,ma, +b / Mz/
Ay )g( a, +b)
e Xo2=m

(0’01)/ H = >(|+b
—'X as|
X X2
Figure 2: -- In the plane parallel coordi-

nates induce duality.

Top part shows the family of segments,
representing points on a given line, inter-
secting at a point. Lower part shows the
duality line # « + 7 point in general.

Parallel Coordinates

coordinates, the corresponding symbols are shown
with a bar superscript (i.e. / represents the line ¢,
P represents the point P etc.).

The Fundamental Point < - Line Duality

Ponts on the plane are represented by segments
between the x; and xj;-axis and, in fact, by the line
containing the segment. In Figure 2, the distance
between the x; and x, axes is 'd". The line

fixg=mx; +b, m<oe

is the collection of points A. They are represented
by the infinmite collection of lines 4 on the xj-plane
which when m # 1 intersect at the poins:

7 d b
Filom——, —),
' (l—m ]-m)

given with respect to the xy-Cartesian coordinates
The reason for representing the point P by the whole
line P, rather than just the segmensr bciween the
parallel axes, is that / may lie ouiside the strip
between the axes. For lines with m= 1, we consider
xy and x;x3 as two copies of the Progective Plane (8]
so that (he line ¢ corresponds 1o the ideal point 7
with tangent direction (ie. slope) b/d. Conversely,
in the x,x;-projective plane the ideal poins with slope
m 15 mapped 1nto the vertical hne at x = d/(1 ~ m) of
the xy-projective plane. Hence, we have a duality
between points and hines of the Projective Plane.
This duality as expressed by means of homogeneous
coordinates is a linear transformation a--correla-
tion--between the line coordinates [m, -1, b] of /
and the point coordinates (J, b, 1=m) of ¢:

Coite=l, (H=4[F)

where [£] and (£), the line and point (homogencous)
coordinates respectively, arc taken as column vectors
and A is a non-singular 3x3 matnx.

By means of the correlation C, above the collection
of points on a curve 1s mapped into a collccuon of
lines which can be considered as tangents to another
curve. On the plane conics map into conics (see
[9]) Acuually, this property is more general and
applics 10 generalzed conics  Consider a double cone
whose basc 15 any bounded convex sct as shown 1n




\ .

XX

oA

Figure 3: -- Convex polygon to a
polygonal hstar

7

Q 2 X2 x4 X8 % b o) xs Xy x0
Here the hstar is a section of a double
pyramid Figure 4: -- Interval on a line in R'°,
Figure 5. As in the ordinary conics, three kinds of
planar sections exist, those having bounded, unbounded for hyperbola) respectively. Collectively, they are
or two disjoint unbounded components. By analogy to referred to as geonics. It turns out that geconics map
the ordinary conics they are called esars, psiars and into gconics (see [13)) and in particular estars map
hstars (the "e” for ellipse, "'p" for parabola and ""h" into hstars shown in Figure 3. This yiclds a new

duality betweem bounded and unbounded convex

[ R NN
LA N BJ
[ X XY
b N
Pe: ot
) o

pgsveaay

* HSTAR

Figure 5: -- Generalized Conics (Gceonics)
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sets and hstars as well as a duality between Convex
Merge (Convex Union) and Intersection. Based on
these results efficient new algorithms for Convex
Hull construction, and the Convex Merge and In-
tersection of Convex sets were derived (see [17]).
For non-convex curves there is a surprising duality
between cusps and inflection points.as shown

Lines in RV
‘ onsider now a line # in R¥ described by:

,i.i+l : xl+l=’nlxr+bl i=2,.,N
m#0

In the x,x.;-plane the relation labeled /. ; is a
line and by the correlation C, translated appropri-
ately it is represented by the point

7 s 1 b
L .(l—l+1_mi, T=m

There are N -1 such independent relations in the
given set of equations, ergo the line ¢ is represented
by the corresponding N - 1 points. For example, in
Figu-e 4 we see several points on a line interval in
R It is clear from the diagram how a point can
be constructed on the line, for any given initial
value of one of the variables. It is also clear how,
given the equations or the coordinates of their equiv-
alent points in paraliel coordinates, points on the
line can be calculated. It also turns out that the
minimum distance between two lines is ''visible" in
parallel coordinates [16] a useful property in problems
involving proximity as in Air Traffic Control see
Figure 6. The time axis can be thought of as a
“clock” and at any given time T, the position of
the aircraft is found by selecting the value of T on
the T-axis.

Hyperplanes in RN

l l p to this point a very special and useful fact
concerning straight lines has not been men-

tioned. In two dimensions a line in Euclidean space
transforms into a point in parallel coordinates. Ev-
ery line parallel to such a line also transforms into
a point in parallel coordinates. The x-coordinate of

Parallel Coordinates
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\
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TI€ X1 x

Figure 6: -- The trajectory of an aircraft

flying on a straight line path with constant

velocity is a line in 4-D and can be repre-
sented by 3 stationary points.

On the four parallel axes a polygonal line
shows the time, value on the T-axis, when
the position (x;, x5, x3) is attained. Even
in an accurate 3-D isometric (above left)
the aircraft look as if they are almost
colliding, the information in parallel coor-
dinates shows that this is not the case.

every such line is the same as the x-coordinate of
every other such line, namely 1 /(1 -m). That is
to say, the set of parallel lines in Euclidean coor-
dinates transforms into a vertical line in parallel
coordinates. In N-dimensions a set of parallel lines
transforms into N -1 vertical lines. This is the
basis for the representation of any hyperplane by
N =1 vertical lines and a polygonal line representing
one of its points. In Figure 7 a planar relation
among industrial data was discovered from this ob-
servation.

Hypersurfaces in RN

feel for the power of the representation can
be gained from Figure 9 from which, with a
bit of practice, the vertices, edges and faces, and
their interrelationship, of the hypercube can be rec-
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#0404

Figure 7: -~ Vertical pattern between two
variables from a multi-variate set of 2000
industrial data points.

This shows a linear relation between R111,
R112 and a third variable.

~

ognized. The representation of more certain more
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Figure 8: -- The polygonal line represents
the point found interior to the
Hyperellipsoid
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Figure 9: -- Hypercube Representation in
Paraliel Coordinates.

Graph of square (a), cube in 3-D (b) and
Cube in 5-D (c) all having unit side.

Parallel Coordinates

general classes hypersurfaces has been found. There
is an algorithm for finding and displaying iaterior/
exterior or points on the surface as shown in Figure
8.

Though necessarily brief, we hope to have conveycd
2 notion of a new geometrical too! for visualizing
and analyzing multivariate relations. Parallel Coor-
dinates have a "built-in mechanism" for generalizing
“jower-dimensional” intuition and results without
any intrinsic limit on the dimensionality.
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On Some Graphical Representations of Multivariate Data

Masood Bolorforoush and Edward J. Wegman
George Mason University

1. Introduction. The classic scatter diagram is a
fundamental tool in the construction of a model for data. It
allows the eye to detect such structures in data as linear or
nonlinear features, clustering, outliers and the like.
Unfortunately, scatter diagrams do not generalize readily
beyond three dimensions. For this reason, the problem of
visually representing mulitivariate data is a difficult, largely
unsolved one. The principal difficulty, of course, is the fact
that while a data vector may be arbitrarily high dimensional,
say n, Cartesian scatter plots may only easily be done in two
dimensions and, with computer graphics and more effort, in
three dimensions. Alternative multidimensional representations
have been proposed by several authors including Chernoff
(1973), Fienberg (1979), Cleveland and McGill (1984a) and
Carr et al. (1986).

An important technique based on the use of motion is
the computer-based kinematic display yielding the illusion of
three dimensional scatter diagrams. This technique was
pioneered by Friedman and Tukey (1973) and is now available
in commercial software packages (Donohoe’s MacSpin and
Velleman’s Data Desk). Coupled with easy data manipulation,
the kinematic display techniques have spawned the exploitation
of such methods as projection pursuit (Friedman and Tukey,
1974) and the grand tour (Asimov, 1985). Clearly, projection-
based techniques lead to important insights concerning data.
Nonetheless, one must be cautious in making inferences about
high dimensional data structures based on projection methods
alone. It would be highly desireable to have a simultaneous
representation of all coordinates of a data vector especially if
the representation treated all components in a similar manner.
The cause of the failure of the standard Cartesian coordinate
representation is the requirement for orthogonal coordinate
axes. In a 3-dimensional world, it is difficult to represent more
than three orthogonal coordinate axes. We propose to give up
the orthogonality requirement and replace the standard
Cartesian axes with a set of n parallel axes.

2. Parallel Coordinates. We propose as a multivariate
data analysis tool the following representation. In place of a
scheme trying to preserve orthogonality of the n-dimensional
coordinate axes, draw them as parallel. A vector (x;, x5, ...,
xn) is plotted by plotting x, on axis 1, x, on axis 2 and so on
through xn on axis n. The points plotted in this manner are
joined by a broken line. Figure 2.1 illustrates two points (one
solid, one dashed) plotted in parallel coordinate representation.
In this illustration, the two points agree in the fourth
coordinate. The principal advantage of this plotting device is
clear. FEach vector (xy, X3, ... , Xn) is represented in a planar
diagram so that each vector component has essentially the same
representation.

The parallel coordinates proposal has its roots in a
number of sources. Griffen (1958) considers a 2-dimensional
parallel coordinate type device as a method for graphically
computing the Kendall tau correlation coefficient. Hartigan
(1975) describes the “profiles algorithm” which he describes as
“histograms on each variable connected between variables by
identifying cases.” Although he does not recommend drawing
all profiles, a profile diagram with all profiles plotted is a
parallel coordinate plot. There is however far more
mathematical  structure, particularly high dimensional
structure, to the parallel coordinate diagram than Hartigan
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Figure 2.1 Parallel coordinate representation of two n-
dimensional points.

exploits. Inselberg (1985) originated the parallel coordinate
representation as a device for computational geometry. His
1985 paper is the culmination of a series of technical reports
dating from 1981. Finally we note that Diaconis and Friedman
(1983) discuss the so-called M and N plots. Their special case
of a 1 and 1 plot is a parallel coordinate plot in two
dimensions. Indeed, the 1 and 1 plot is sometimes called a
before-and-after plot and has a much older history. The
fundamental theme of this paper is that the transformation
from Cartesian coordinates to parallel coordinates is a highly
structured  mathematical transformation, hence, maps
mathematical objects into mathematical objects. Certain of
these can be given highly useful statistical interpretations so
that this representation becomes a highly useful data analysis
tool.

3. Parallel Coordinate Geomelry. The parallel
coordinate representation enjoys some elegant duality properties
with the usual Cartesian orthogonal coordinate representation.
Consider a line L in the Cartesian coordinate plane given by L:
y=mx+b and consider two points lying on thai line, say
(a, ma+b) and (¢, mc+b). For simplicity of computation we
consider the xy Cartesian axes mapped into the xy parallel axes
as described in Figure 3.1. We superimpose a Cartesian
coordinate axes t,u on the xy parallel axes so that the y parallel
axis has the equation u=1. The point {(a, ma+b) in the xy
Cartesian system maps into the line joining (a, 0) to (ma+b, 1)
in the tu coordinate axes. Similarly, (c, mc+b) maps into the
line joining (c, 0) to (mc+b, 1). It is a straightforward
computation to show that these two lines intersect at a point
(in the tu plane) given by I: ( b(1—m)™", (1—m)™"). Notice
that this point in the parallel coordinate plot depends only on
m and b the parameters of the original line in the Cartesian
plot. Thus L is the dual of L and we have the interesting
duality result that points in Cartesian coordinales map into
lines in paralle] coordinates while lines in Cartesian coordinates
map into points in parallel coordinates.

For 0 < (1-m)' < 1, m is negative and the
intersection occurs between the parallel coordinate axes. For
m=—1, the intersection is exactly midway. A ready statistical
interpretation can be given. For highly negatively correlated
pairs, the dual line segments in parallel coordinates will tend to
cross near a single point between the two parallel coordinate
axes. The scale of one of the variables may be transformed in




Y & u 1\
{c, mc+b)
(ma+b.1) N
(me+b,1) Y
{a, ma+b}
7/ x / (a.0)

f(c.()) Tt

Figure 3.1 Cartesian and parallel coordinate plots of two
points. The tu Cartesian coordinate system is superimposed on
the xy parallel coordinate system.

such a way that the intersection occurs midway between the
two parallel coordinate axes in which case the slope of the
linear relationship is negative one.

In the case that (1-m)'<0 or (1-m)'>1, m is
positive and the intersection occurs external to the region
between the two parallel axes. In the special case m=1, this
formulation breaks down. However, it is clear that the point
pairs are (a, a+b) and (¢, c+b). The dual lines to these points
are the lines in parallel coordinate space with slope b! and
intercepts —ab™ and —cb™! respectively. Thus the duals of
these lines in parallel coordinate space are parallel lines with
slope bl. We thus append the ideal points to the parallel
coordinate plane to obtain a projective plane. These parallel
lines intersect at the ideal point in direction bl In the
statistical setting, we have the following interpretation. For
highly positively corrclated data, we will tend to have lines not
intersecting between the parallel coardinate axes. By suitable
linear rescaling of one of the variables, the lines may be made
approximately parallel in direction with slope b™'. In this case
the slope of the linear relationship between the rescaled
variables is one. See Figures 3.2 for an illustration of large
positive and large negative correlations. Of course, nonlinear
relationships will not respond to simple linear rescaling.
However, by suitable noanlinear transformations, it should be
possible to transform to linearity. The point-line, line-point
duality seen in the transformation from Cartesian to parallel
coordinates extends to conic sections. An instructive
computation involves computing in the parallel coordinate
space the image of an ellipse which turns out to be a general
hyperbolic form. For purposes of conserving space we do not
provide the details here.

It shouid be noted, however, that the solution to this
computation is not a locus of points, but a locus of lines, a line
conic. The envelope of thir line conic is a point conic. In the
case of this computation, the point conic in the original
Cartesian coordinate plane is an ellipse, the image in the
parallel coordinate plane is as we have just seen a line
hyperbola with a point hyperbola as envelope. Indeed, it is true
that a conic will always map into a conic and, in particular, an
ellipse will always map into a hyperbola. The converse is not
true. Depending on the details, a hyperbola may map into an
ellipee, a parabola or another hyperbola. A fuller discussion of
projective transformations of conics is given by Dimsdale
(1984). Inselberg (1985) generalizes this notion into parallel
coordinates resulting in what he calls hstars.

We mentioned the duality between points and lines and
conics and conics. It is worthwhile to point out two other nice
dualities. Rotations in Cartesian coordinates become
translations in parallel coordinates and vice versa. Perhaps
more interesting from a statistical point of view is that points
of inflection in Cartesian space become cusps in paralle
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coordinate space and vice versa. Thus the relatively hard-to-
detect inflection point property of a function becomes the
notably more easy to detect cusp in the parallel coordinate
representation. Inselberg (1985) discusses these properties in
detail.

4. Further Statistical Interpretations. Since ellipses
map into hyperbolas, we can have an easy template for
diagnosing uncorrelated data pairs. Consider Figure 3.2. With
a completely uncorrelated data set, we would expect the 2-
dimensional scatter diagram to fill substantially a
circumscribing circle. As illustrated in Figure 3.2, the parallel
coordinate plot would approximate a figure with a hyperbolic
envelope. As the correlation approaches uegative one, the
hyperbolic envelope would deepen so that in the limit we would
have a pencil of lines, what we like to call the cross-over effect.
As the correlation approaches positive one, the hyperbolic
envelope would widen with fewer and fewer croes-overs so that
in the limit we would have parallel lines. Thus correlation
structure can be diagnosed from the parallel coordinate plot.
As noted earlier, Griffen (1958) used this as a graphical device
for computing the Kendall tau.

p=1.0
p=0.8
p=0.2
p=0.0
p=-0.2
p=-0.8
p=-—10

Figure 3.2 Parallel coordinate plot of 6 dimensional data
illustrating correlations of
p=1,.8,.20 —.2 —8and —1.

Griffen, in fact, attributes the graphical device to
Holmes (1928) which predates Kendall’s discussion. The
computational formula is

where X is the number of intersections resulting by connecting
the two rankings of cach member by lines, one ranking having
been put in natural arder. While the original formulation was
framed in terms of ranks for both x and y axes, it is clear that
the number of crossings is invariant to any monotone increasing
transformation of either x or y, the ranks being one such
transformation. Because of this scale invariance, one would
expect rank-based statistics to have an intimate relationship to
parallel coordinates.

It is clear that if thete is a petfect positive linear
relationship with no crossings, then X = 0 and r = L.
Similarly, if there is a perfect negative linear relationship,
Figure 3.2 is again appropriate and we have a pencil of lines.




Since every line meets every other line, the number of

intersections is (1) so that 1 - N\ %
n(n—1 ’ X R

It should be further noted that clustering is easily diagnosed 2 - ‘,‘ﬂg\i\f

using the parallel coordinate representation. \‘ &

So far we have focused primarily on pairwise parallel
coordinate relationships. The idea however is that we can, so
to speak, stack these diagrams and represent all n dimensions 3
simultaneously.  Figure 4.1 thus illustrates 6-dimensional
Gaussian uncorrelated data plotted in parallel coordinates. A
6-dimensional ellipsoid would have a similar general shape but
with hyperbolas of different depths. This data is deep ocean 4
acoustic noise and is illustrative of what might be expected.

,,///%
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o

Figure 4.2 A five dimensional scatter diagram in parallel
coordinates illustrating marginal densities, correlations, three
dimensional clustering and a five dimensional mode.

ch2
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Figure 4.2 thus illustrates some data analysis features
of the parallel coordinate representation including the ability to
diagnose one-dimensional features (marginal densities), two-
dimensional features (correlations and nonlinear structures),
three-dimensional features (clustering) and a five-dimensional
feature (the mode). In the next section of this paper we
consider a rveal data set which will be illustrative of some
additional capabilities.

Ch3

chs

5. An Auto Data Ezample. We illustrate parallel
cooordinates as an exploratorty analysis tool on data about 86
1980 model year automobiles. They consist of price, miles per
gallon, gear ratio, weight and cubic inch displacement. For n
= 5, 3 presentations are needed to present all pairwise
permutations.  Figures 5.1, 5.2 and 5.3 are these three
presentations. In Figure 5.1, perhaps the most striking feature
is the cross-over effect evident in the relationship between gear
ratio and weight. This suggests a negative correlation. Indeed,
this is reasonable since a heavy car would tend to have a large

-
o3
O

Figure 4.1 Parallel coordinate plot of 6 channel sonar data.
The data is uncorrelated Gaussian noise. The second
coordinate represents a relatively remote hydrophone and has a
somewhat different mean. Notice the approximate hyperbolic
shape.

Price L

Figure 4.2 is illustrative of some data structures one
might see in a five-dimensional data set. First it should be
noted that the plots along any given axis represent dot R
diagrams (a refinement of the histograms oi Hartigan), hence //! R o
convey graphically the one-dimensional marginal distributions. AT\ R R A
In this illustration, the first axis is meant to have an ‘Vi“’:\\:;‘: N
approximately normal distribution shape while axis two the "‘ \\"‘0;,\"\9
shape of the negative of a x>. As discussed above, the pairwisc " ’v",\\§\
comparisons can be made. Figure 4.2 illustrates a number of k ).
instances of lincar (both negative and positve), nonlinear and N
clustering situations. Indeed, it is clear that there is a 3- g N

dimensional cluster along coordinates 3, 4 and 4.

Consider also the appearance of a mode in parallel
coordinates. The mode is, intuitively speaking, the location of
the most intense concentration of probability. Hence, in a
sampling situation it will be the location of the most intense
concentration of observations. Since observations are
represented by broken line segments, the mode in parallel
cootdinates will be represented by the most intense bundle of
broken line paths in the parallel coordinate diagram. Roughly
speaking, we should look for the most intense flow through the
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diagram. In Figure 4.2, such a flow begina near the center of Figure 5.1 A parallel coord'mauf plot in five dimensions of
coordinate axis one and finishes on the left-hand side of axis automnobile data. Note the negative correlation between gear
five ratios and weight.
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engine providing considerable torque thus requiring a lower gear
ratio. Conversely, a light car would tend to have a small
engine providing small amounts of torque thus requiring a
higher gear ratio.

Consider as well the relationship between weight and
cubic inch displacement. In this diagram we have a
considerable amount of approximate parallelism (relatively few
crossings) suggesting poeitive correlation. This is a graphic
representation of the fact that big cars tend to have big engines,
a fact most are prepared to believe. Quite striking however is
the negative slope going from low weight to moderate cubic
inch displacement. This is clearly an outlier which is unusual
in neither variable but in their joint relationship.

The relationship between miles per gallon and price is
also perhaps worthy of comment. The left-hand side shows an
approximate hyperbolic boundary while the right-hand side
clearly illustrates the cross-over effect. This suggests for
inexpensive cars or poor mileage cars there is relatively little
correlation. However, cosily cars almost always get relatively
poor mileage while good gas mileage cars are almost always

relatively inexpensive.
o'
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Figure 5.2 The second permutation of the five dimensional
presentation of the automobile data. Notice the two classes of
linear relations gear ratio and miles per gallon.

Turning to Figure 5.2, the relationship between gear
ratio and miles per gallon is instructive. This diagram is

suggestive of two classes, Notice that there are a number of
observations represented by line segments tilted slightly to the
right of vertical (high positive slope) and a somewhat larger
numter with a negative slope of about —1. Within each of
these two classes we have approximate parallelism. This
suggests thal the relationship between gear ratios and miles per
gallon is approximately linear, a believable conjecture since low
gears = big engines = poor mileage while high gears = small
engines = good mileage. What is intriguing, however, is that
there scems to be really two distinct classes of automabiles cach
exhibiting a linear relationship, but with different linear
relationships within each class.

Indeed in Figure 5.3, the third permutation, we are
able to highlight this separation into two classes in a truly 5
dimensional sense. The shaded region in Figure 5.3 describes a
class of vehicles with relatively poor gas mileage, relatively
heavy, relatively inexpensive, relatively large cngines and
eelatively low gear ratios. Figure 5.4 is a repeat of this graphic
but with different shading highlighting a class of vehicles with
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Figure 5.3 The third permutation of the five dimensional
automobile data. Note the highlighting of the domestic
automobile group.

relatively good gas mileage, relatively light weight, relatively
inexpensive, relatively small engines and relatively high gear
ratios. In 1980, these two characterizations describe
respectively domestic automobiles and imported automobiles.

6. Graphical Ezlensions of Parallel Coordinate Plots.
The basic parallel coordinate idea suggests some additional
plotting devices. = We call these respectively the Parallel
Coordinate Density Plots, Relative Slope Plots and Color
Histograms. These are extensions of the basic idea of paraliel
coordinates, but structured to exploit additional features or to
convey certain information more easily.

Figure 5.4 ‘The third permutation showing highlighting of the
imported automobile group.

6.1 Parallel Coodinate Density Plots.  While the basic
parallel coordinate plot is a useful device itself, like the
conventional scatter diagram, it suffers from heavy overplotting
with large data sets. In order to get around this problem, we
use a parallel coordinate density plot which is computed as
follows. Our algorithin is based on the Scott (1985) notion of




average shifted histogram (ASH) but adapted to the parallel
coordinate context. As with an ordinary two dimensional
histogram, we decide on appropriate rectangular bins. A
potential difficulty arises because a line segment representing a
point may appear in two or more bins in the same horizontal
slice. Obviously if we have k n-dimensional obeervations, we
would like to form a histogram based on k entries. However,
since the line segment could appear in two or more bins in a
horizontal slice, the count for any given horizontal slice is at
least k and may be bigger. Moreover, every horizontal slice
may not have the same count. To get around this, we convert
line segments to points by intersecting each line segment with a
horizontal line passing through the middle of the bin. This
gives us an exact count of k for each horizontal slice. We
construct an ASH for each horizontal slice (typically averaging
5 histograms to form our ASH). We have used contours to
represent the two-dimensional density although gray scale
shading could be used in a display with sufficient bit-plane
memory. Because of our inability to reproduce color or gray-
scale, we cannot give an example of a parallel coordinate
density plot in this paper. Parallel coodinate density plots have
the advantage of being graphical representations of data sets
which are simultaneously high dimensional and very large.

6.2 Relative Slope Plots. We have already seen that
parallel line segments in a parallel coordinate plot correspond to
high positive correlation (linear relationship). As in our
automobile example, it is possible for two or more sets of linear
relationships to exist simultaneously. In an ordinary parallel
coordinate plot, we see these as sets of parallel lines with
distinct slopes. The work of Cleveland and McGill (1984b)
suggests that comparison of slopes (angles) is a relatively
inaccurate judgement task and that it is much easier to
compare magnitudes on the same scale. The relative slope plot
is motivated by this. In an n-dimensional relative slope plot
there are n—1 parallel axes, each corresponding to a pair of
axes, say x; and x;, with x; regarded as the lower of the two
coordinate axes. For each observation, the slope of the line
segment between the pait ot ~xes is plotted as a magnitnde
between —1 and +1. The maximum positive slope is coded as
+1, the minimum negative slope as —1 and a slope of oo as 0.
The magnitude is calculated as cos 1 where n is the angle
between the x; axis and the line segment corresponding to the
observation. Each individual observation in the relative slope
plot corresponds to a vertical section through the axis system.
An example of a relative slope plot is given in Figure 6.1.
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Figure 6.1 Relative slope plot of five dimensional automobile
data. Data presented in the same order as in Figure 5.4
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Notice that since slopes are coded as heights, simply laying a
straightedge will allow us to discover sets of linear relationshipe
within the pair of variables x; and x;.

6.3 Color Histograms. The basic set-up for the color
histogram is similar to the relative slope plots. For an n-
dimensiopal data set, there are n parallel axes. A vertical
section through the diagram corresponds to an observation.
The idea is to code the magnitude of an observation along a
given axis by a color bin, the colors being chosen to form a
color gradient. We typically choose 8 to 15 colors. The
diagram is drawn by choosing an axis, say x,, and sorting the
observations in ascending order. Along this axis, we see blocks
of color arranged according to the color gradient with the width
of the block being proportional to the number of obeervations
falling into the color bin. The observations on the other axes
are arranged in the order corresponding to the x, axis and color
coded according to their magnitude. Of course, if the same
color gradient shows up say on the xm axis as on the x,, then
we know x, is positively “correlated” with xm. If the color
gradient is reversed, we know the “correlation” is negative. We
used the phrase “correlation” advisedly since in fact if the color
gradient is the same but the color block sizes are different, the
relationship is nonlinear. Of course if the xn axis shows color
speckle, there is no “correlation” and x, is unrelated to xm.
Again we are unable to give an example of a color histogram in
this paper because of our inability to reproduce color or gray-
scale.

7. Implementations and Ezperiences. Our parallel
coordinates data analysis software has been implemented in two
forms, one a PASCAL program operating on the IBM RT
under the AIX operating system. This code allows for up to
four simultaneous windows and offers simultaneous display of
parallel coordinates and scatter diagram displays. It offers
highlighting, zooming and other similar features and also allows
the possibility of nonlinear rescaling of each axis. It
incorpotates axes permutations and also includes Parallel
Coordinate Density Plots, Relative Slope Plots and Color
Histograms.

Our second implementation is under development in
PASCAL for MS-DOS machines and includes similar features.
In addition, it has a mouse-driven painting capability and can
do real-time rotation of 3-dimensional scatterplots. Both
programs use EGA graphics standards, with the second also
using VGA or Hercules monochrome standards.

We regard the parallel coordinate representation as a
device complementary to scatterplots. A major advantage of
the parallel coordinate representation over the scatterplot
matrix is the linkage provided by connecting points on the axes.
This linkage is difficult to duplicate in the scatterplot matrix.
Because of the projective line-point duality, the structures seen
in a scatterplot can also be seen in a parallel coordinate plot.
Moreover, the work of Cleveland and McGill (1984b) suggests
that it is easier and more accurate to compare obeervations on
a common scale. The parallel coordinate plot and the
derivatives of it de facto have a common scale and so for
example a sense of variability and central tendency among the
variables are easier to grasp visually in parallel coordinates
when compared with the scatterplot matrix. On the other
hand, one might interpret all the ink generated by the lines as &
significant disadvantage of the parallel coordinate plot. Our
experience on this is mixed. Certainly for large data sets oo
hard copy this is a problem. When viewed on an interactive
graphics screen particularly a high resolution screen, we have
often found that individual points in a scatterplot can get lost
because they are simply not bright enough. That does not
happen in a paralle! coordinate plot. Howev.-, if many points
are plotted in monochrome, it is hard to distingu.l between
points. We have gotten around this problem by plotting




distinct points in different colors. In an EGA implementation,
this means 16 colors. This is surprisingly effective in separating
points. In one experiment, we plotted 5000 5-dimensional
random vectors using 16 colors, and inspite of total
overplotting, we were still able to see some structure. In data
sets of somewhat smaller scale, we have implement a
scintillation technique. With this technique, when there is
overplotting we cause the screen view to scintillate between the
colors representing the overplotted points. The speed of
scintillation is is proportional to the number of points
overplotted and by carefully tracing colors, one can follow an
individual point through the entire diagram.

We have found painting to be an extraordinarily
effective technique in parallel coordinates. We have a painting
schemne that not only paints all lines within a given rectangular
area, but also all line lying between to slope constraints. This
is very effective in separating clusters. We also use invisible
paint to eliminate observation points from the data set
temporarily. This is a natural way of doing a subset selection.
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GRAPHICAL REPRESENTATIONS OF MAIN EFFECTS AND INTERACTION
EFFECTS IN A POLYNOMIAL REGRESSION ON SEVERAL PREDICTORS

William DuMouchel, BBN Software Products Corporation

Abstract

The table of coefficients from a polynomial regression
analysis having several predictors is hard to interpret because
its focus is on the terms in the fitted equation, rather than on
the variables used to define those terms. Methods for
graphically comparing the effects of each predictor to each
other and to the residuals are introduced and discussed. The
techniques are easy to implement and to interpret, and have
bgen generalized to provide graphical summaries of interaction
effects.

1.

Partial residual plots (also known as component-plus-
residual plots) are useful diagnostic tools in multiple
regression analysis. Mallows (1986) discusses them and
suggests an extension of the technique, which he calls an
augmented partial residual plot, designed to reveal a nonlinear
effect in a regression model. This paper introduces
generalizations of such plots which are designed 1o help a data
analyst interpret the fit to an arbitrary response surface model
(RSM), a regression equation in the form of a polynomial in
several variables. This new technique, called an adjusted-Y
plot, can also be used to help diagnose nonlinearity of a
regression function with respect to one of the predictors, and
in fact, if the regression model being fitted is additive and
linear in the predictors, the adjusted-Y plot reduces to the
paruat resiuual piot. Howevcr, the adjusted-Y plot is useful
for an arbitrary polynomial RSM, and the emphasis of this
technique is not so much to diagnose nonlinearity as to
visualize the nonlinearity which has already been incorporated
into the RSM, with a secondary goal of diagnosing deviations
from the assumptions of the RSM. The adjusted-Y plot is
especially useful as the foundation for other graphical
techniques for comparing the effects of the different predictor
variables in the RSM, and for helping the data analyst visualize
the size and significance of interaction effects.

Introduction

Partial residuals. Suppose that a linear regression
model with J predictors, of the form

yi =bp+bixji+baxpp+ ... +byxjy+e;i=1,...,n

has been fit by least squares, where the b's are the estimated
coefficients and the e's are the residuals. Suppose it is desired
to focus on one of the predictors, say x; =(x;;;i=1,...,n).
and check the assumptions of constant variance and linearity
with respect to that predictor. The partial residuals (pr) with
respect to xy are defined as

prit =y +b;(xj1-Xp) +ei, i=1,...,n,
where ¥ and X are means, and b; and the e; are taken from
the full regression. The plot of pr;; vs x;; has the advantage

that it displays both the signal coming from x; (the term bi(x;;

- X1)) and the noise (the term e;) as they occur in the
regression on all J predictors. This plot is to be distinguished
from the "added variable” or "partial regression” plot, which is
similar to the partial residual plot except that the values plotted
on the horizontal axis are the residuals (i) - Qn), based on a
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regression of x; on the remaining J-1 predictors, rather than
the x;; themselves.

Augmented partial residuals. Mallows (1986)
suggested that nonlinearity in the relationship between y and

x1 can be better detected by adding (xi; - X1)? to the regression
equation and then replacing pri; by

apryy =y + bi(xip - X1) + cl(xi1 - X1)2 - ave] +¢;,

where by and c are coefficients and the e's are residuals from
the augmented regression model, and where ave is the average

of (x;| - X1)? in the sample. The augmented partial residual
plot is most effective, compared to the simple partial residual
plot, when one or more of the other predictors are correlated
with the term (xj; - il)z.

Adjusted-Y plots. Suppose that a response surface
model equation is represented as

yi = F(Xip, Xiz -5 XiD) + &,

where F is the fitted polynomial and the e's are the residuals
from the regression. For any one of the predictors, say xi,
define an adjusted-fit function over the range of x; as

f00 = 5T Flx, xias -0 %), 0
and define an adjusted-Y variable for the ith observation as
v =i +ei @

As proved in Section 5.2, if F is of the form bg + by x1 +
E*(x3, ... , XJ), then every y?‘f’= prii. Also, if F is of the

2 adj _
form b + by x1 + by x; + F*(x2, ..., xj), then every y;;" =

apry;. The adjusted-Y plot is a generalization of the panigl
residual and the augmented partial residual plots which is
useful for response surface models having arbitrary power and
interaction terms.

2. Example Usage of the Adjusted-Y Plot

2.1 Data and Standard Analysis

The data used in this example were taken from Andrews
and Herzberg (1985, p.355-6) and consist of measurements
on 42 apple trees in an agricultural experiment. The response
is the mean weight (W1) of mature apples on each tree, which
was considered 10 be a proxy for the relative freedom of the
apples from a disease which shrivels them. Several variables
were measured and reported by Andrews and Herzberg (1985)
and by the original researchers Ratkowsky and Martin (1974),
but this example will use just three of them, the
concentrations, in parts per million, of three minerals in the
apples of each tree. The three concentrations, labeled K, Pn,
and Ca respectively, were used to form a response s.rface
mode! to describe the association between the mineral
concentrations and the mean weight variable. After some
preliminary modeling, an equation of the form




Wt =bg+b;Pn+byK+b3Ca+byPn*K + bsPn*Ca +
bsK2+e 3)

was considered adequate for describing the data. Figure 1
shows the table of coefficients and some related statistics for
this regression model. Figure 2 shows a scatterplot of the
absolute values of the studentized residuals versus the fitted
values from this regression, with a lowess fit to the points
showing no pattern indicating a violation of the usual
assumptions of regression models. Figure 3 shows a
scatterplot of Wt versus K, with three different symbols used
to denote points falling within three ranges (low, medium, and
high) of the variable Pn.

~

Least Squares Coefficients, Response WT, Model PN K CA

0 Term 1 Coeff. 2 std. Error 3 T-value 4 Signif.
11 £u3, 273597 129.179267 1.90 0.0659
2 PN -0.171712 0.u76722 -2.24 0.0317
3K 0.009638 0.014979 0.64 0.5241
4 CA -0.377748 0.244072 -1.55 0.1307
S DN*K c.20c022 0.000006 1.94 0.0607
6 PN*CA 0.00011% 0.000123 0.95 0.3492
T K**2 -0.000001 9.523644e-07 -1.20 G.2386
No. cases = 42 R-sq. = 0.7532 RMS Error = 9.462
= 35 R-sq-adf. = 0.7109 Cond. No. = .

LResid. df

Figure 1. Table of coefficients and related output for the example data.
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Figure 2. Absolute residual plot with lowess curve for the example dalta,

Comparing Figure 1 with Figure 3, the difficulty of
interpreting the table of coefficients from a response surface
mocde! becomes evident. Although the scatterplot of the raw
data in Figure 3 seems to show a definite relationship between
Wt and K, none of the three terms in the table of coefficients
that contain K as a factor has a significant coefficient, although
the term Pn*K is borderline. In fact, a casual glance at the
table of coefficients is not enough to confirm that the fitted
value of Wt increases with K, since complicated comparisons
of the relative contributions of the linear, quadratic and
interaction terms are required. If all three mineral
concentrations had been standardized to have mean () and
variance 1, the task of sorting out the effects of each mineral
from the table of coefficients would be somewhat eased, but
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correlations among the minerals can prevent an easy
interpretation no matter how they are scaled.

( Data taken from Mulreq APPLEMUL
1404
[ .
° [
1204 . o o
M ° . °
E o .
» 1004 . o 9 °
. © Q. .
N +
. . ©
- J 0 % c
W BO4 . +
o o R
B . ‘o
e,
G
! : " PN(@PM)-1
404 o PN(PPM) -2
+ PN(PPM} -3
25 + + —+ + -+ —{
70C0 8000 9000 10600 11600 12000 13000
K{PPM}
- J

Figure 3. Scatterplot of Wt vs. K, coded by range of Pn.

A closer look at Figure 3 shows that the predictors K and
Pn are indeed correlated, since the pattern of symbols denoting
approximate values of Pn on the plot shows that low and high
values of K tend to be associated with low and high values of
Pn, respectively. So there is ambiguity in Figure 3; the
apparent trend of Wt with K could be due partially to
confounding with the effect of Pn, and the apparent linearity of
the trend could also be an artifact of the confounding. The
scatter of the points in Figure 3 about this trend is also
ambiguous, since it is due partly to the error term from the
regression and partly to the effects of the other two predictors.
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Figure 4. Contour plot of part of the fitted response surface. Plotted
points are locations of raw data.

Figure 4 shows a contour plot of the fitted surface versus
K and Pn at the point Ca=200. Contour plots are frequently
used to study fitted response surfaces, but they have some
limitations. Many people without a technical background find
contour plots more difficult to interpret than the basic X-Y
plot. There is no measure of uncertainty on the standard
contour plot: no residuals to show where there might be lack
of fit to the model, and no error bars to show the magnitude of
the sampling error inherent in the contours. Each contour plot
must fix all but two of the predictors, so only a small slice of
the design space is portrayed on contour plots of models
having several predictor variables.




2.2 Adjusted-Y Plots

Figures 5 and 6 show the adjusted-Y plots for the variables
Pn and K, respectively. Figure 5 shows the average (over the
n=42 sample points) of fitted Wt versus Pn, namely the
straight line fi(Pn), with the residuals from the response
surface fit added to form the ordinates, the values of adjusted-
Wt defined by (2). Figure 6 shows the average of fitted Wt
versus K, namely the parabola f2(K), with the same residuals
added to form the second set of adjusted-Wts. It is instructive
to compare Figure 6 with Figure 3. The ambiguities of Figure
3 have been cleared up in Figure 6. The dependence of Wton
K is portrayed in Figure 6 clear of any confusion with the
effects of Pn or Ca. The adjusted-Y plot communicates the
magnitude of the curvature and the strength and direction of
the overall trend more powerfully than does the table of
coefficients. Figure 6 also makes possible a comparison of the
relativ¢ magnitudes of the variation due to K versus the
uriexplained variation in Wt. Figure 3 is misleading in this
comparison.
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Figure 6. Adjusted-fit curve and adjusted-Y points for the predictor K.

Since the curve in Figure 6, f3(K), is the average of n=42
purabolas, and since the model does contain an interaction term
between K and Pn, it is possible that for some values of Pn the
behavior of the fitted function will be quite different from that
of f2(K). But the average behavior, at least, is easily
visualized, standardized to the distribution of the other two
predictus in the sample. And any K-regions of lack of fit of
the points 10 the model are casily identified. In Section 4 a
method of displaying the interaction effects in response surface
models is described.

129

3. Standard Errors for Adjusted-Fits and
for Average Effects

3.1 Development of Standard Errors.

We now shift attention from the adjusted-Y values, which
are interpreted much like partial residuals, to the adjusted-fit
curves. If the fitted response surface F is linear and additive in
every predictor, and contains a constant term, then the jth
adjusted-fit curve is just

fi(x) =§ +b(x-X;,
where bj is the coefficient of x; in the multiple regression. In
this case the variance of fj(x) would be estimated by
mse -
——+ V(b (x - X2,

where mse is the mean squared error of the residuals and V(b;)
is the usual estimate of the variance of the regression
coefficient, based on the inverse of the X!X matrix from the
regression.

In the general case of a polynomial response surface in J
variables, the j adjusted-fit curve is a polynomial of degree p;

fJ(X) = EE-":O Bjk xk N

where p; is the largest power of x; which occurs in F. The
coefficients Bjx are linear combinations of the b's, the
coefficients of F. For example, using the RSM of (3),

f2(K) =By + By K + By K2,

Biy =bg+ b]ﬁl +b3é-i; + bs Pn*Ca ,
By, =by+bsPn,
Biy =Dbg.

where the constants Pn , Ca and Pn*Ca are averages of the
three corresponding terms over the n sample points. Thus, if
b is the vector of least squares coefficients and if B; is the
vector (Bjg, Bj), ... )Y, then there is a matrix A;, with elements
formed from averages of predictor variable terms, which
transforms b to By;:

B, =Ajb,

C; =estimated covariance matrix of B, ,

= A (X'X)! A} mse.

3.2 Confidence Intervals for Adjusted Effects of

Variables

Once the covariance matrix of each By is available, it is
easy to obtain standard errors and confidence intervals for the
functions f(x) at any point x. The curves in Figures 5 and 6
could have error bars or even upper and lower confidence
curves drawn about them on the figures. Such confidence
intervals may not often be useful, since the height of the
adjusted-fit curve at any point is not a predicted response at
any particular design point, but is instead an average of
predictions at n design points. A more useful application of
these covariances is for the computation of confidence




intervals for contrasts based on the difference of two values,
£(x) - £(x).

As an example, look at the adjusted-fit curve in Figure 6,
f2(K). Within the range of the data. the minimum value of f;
is f3(7240)=51, and the maximum value of f; is
£2(12910)=116. So 116 - 51 = 65 is the estimated increase in
Wt when K changes from 7240 to 12910, adjusted for all the
other predictors. A confidence interval about this difference is
derived as follows:

Define x as the row vector (1, x, x2, ... ), and define x’
analogously. Then

fi(x) - fi(x") =(x - x) Bj,
vj = estimated variance of [fi(x) - fi(x)]
={x-x)Cj(x-x).
Therefore a confidence interval for the increase in mean

response associated with changing the jth variable from x to x'
is

fj(x) - f(x") £ u(df, 1-/2) Vvj 4

where t(df, 1-a/2) is a tabled student's-t percentile with
degrees of freedom equal to the degrees of freedom of mse.

Figure 7 graphs these confidence intervals for the effects
of the three predictor variables in the RSM for the apple data.
In each case, the values of x and x’ used are the maximum and
minimum values, respectively, of the predictor in the sample.
(Section 5.1 provides the rules for choosing x and x' in
general, and also discusses the choice of tabled percentile for
the width of the interval.)
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Figure 7. Effccts graph based on the adjusted-fit curves.

Compare Figure 7 with Figure 1, the table of coefficients,
as summaries of the RSM analysis. The information in Figure
7 is tremendously more accessible. You can see at a glance
that Pn has a negative effect of about 55 grams, K has a
positive effect of about 65 grams, Ca has a negative effect of
about 25 grams, and that all three effects are statistically
significant. (The word "effect” as used here is not intended to
imply a causal effect, merely an associated change in mean
response.) The table of coefficients is quite opaque by
comparison. Iti, practically impossible to tell which variables
have effects in which directions without elaborate calculation,
much less gauge the relative significance of the three
predictors. The problem with the table of coefficients as a
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summary of the analysis is that it focuses on the terms of the
model, not on the variables of the model.

Figure 4, a contour plot of the fitted RSM, although it does
focus on the variables, is still much less effective than Figure 7
as a summary of the analysis. Figure 4 gives no information
about the effect of Ca, and no information about the statistical
significance of any of the effects. And it is just plain harder to
read.

This is not to say that you should never look at tables of
coefficients or contour plots of RSM fits, just that the graph of
effects as here defined is a valuable addition to the statistician’s
toolbox, especially in conjunction with the adjusted-Y plots
discussed previously and the interaction graphs d'scussed in
the next section.

4. Interaction Graphs

4.1 The Bivariate Adjusted-Fit Function

In order to explore the interaction inherent in a fitted RSM
equation, we extend the definition of the adjusted-fit function
of (1) to the bivariate case. Suppose we are interested in the
fitted relationship as a function of two of the predictors, say x;
and x,, after adjusting for all other predictors. As before, let
F(x1, X2, X3, --. , XJ) be the fitted RSM equation, and define

1
fi2(x, z) = sz F(x, Z, Xk3, ... » XkJ).

In the case of the example model (3),

£2(Pn, K) = (bg+ bz Ca) + (by + bs Ca)Pn + by K +
bs Pn*K + bg K?2.

As in the case of the univariate adjusted-fit function, the
coefficients of fy2 are simple functions of the coefficients of F
and certain moments of the predictors which are being
averaged out. It is similarly straightforward to compute the
variance of f1a(x, z) at any value of (x, z), or the variance of
any difference of the form [f12(x, 2) - fi2(x", 2] for any pairs
of values.

4.2 Displaying Interaction Effects

Figure 8 shows how the effect of an interaction term in a
RSM can be displayed in a grarh analogous to the effects
graph of Figure 7. The top bar in Figure 8 repeats the top bar
in Figure 7, a confidence interval for the effect of Pn, namely
£,(3280) - f1(1490). The next three bars in Figure 8 display
confidence intervals for f12(3280, K) - £,2(1490, K), for three
values of K. That is, the same contrast in Pn is repeated
assuming K is fixed, for various values of K. By comparing
these three intervals, you can see the direction, magnitude, and
significance of the interaction between Pn and K in their effect
on Wt, as measured by the RSM. Since the midpoints of the
intervals move to the right as K increases, the interaction is
positive, The magnitude of the interaction is about the same as
the mair »ffect of Pn, since at the largest value of K the effect
of Pn is almost exactly 0, while at the minimum value of K the
effect of Pn is about double its average value. And the
interaction is on the borderline of being statistically significant,
since the confidence intervals for the effect of Pn at the high
and low values of K barely overlap. (In this case the
judgement of statistical significance is merely approximate,




since the overlapping of the two confidence intervals does not
rule out finding a significant difference. But an approximate
indication of the sampling error is clearly communicated by the

graph.)
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Figure 8. Interaction graph based on the bivanate adjusted-fit function.

The bottom three confidence intervals in Figure 8 provide
the dual interpretation of the interaction between Pn and K.
First the main effect of K, measured as £2(12910) - f5(7240),
is graphed exactly as in the middle interval of Figure 7. Below
it are confidence intervals for {fi2(Pn, 12910) - f12(Pn,
7240)], for the extreme values of Pn in the sample.
Comparison of these intervals leads to the same interpretation
as before, but with emphasis on how the effect of K changes
as a function of Pn, rather than vice-versa.

As a device for visualizing interaction, Figure 8 has
advantages over Figure 4, the contour plot. In order to figure
out the direction of the interaction from the contour plot, you
can notice that the contours are more closely spaced in the
vertical (K) direction where Pn is large than where Pn is small.
This indicates that K has a greater effect when Pn is large than
when Pn is small. But perceiving the magnitude of the
interaction from Figure 4 is even more difficult, while there is
no indication at all of statistical significance.

The table of coefficients in Figure 1, on the other hand,
does display the direction and significance of the Pn*K term
(p=.06), but the magnitude of the interaction effect compared
to the other effects is hard to see from the table alone. And if
the model were expanded to contain cubic terms like Pn*K2,
then even the significance of the interaction could become
obscured in the table by the correlations between the various
terms of the model.

One frequently recommended method for visualizing the
interaction between two factors on a response is to graph the
response versus one of the factors separately for different
levels of the other factor. The scatterplot in Figure 3 is such a
plot, but the plot in Figure 9 better illustrates the idea by
overlaying smoothed lowess curves over each of the three sets
of points. The curve based on the largest values of Pn is
steepest, confirming the interaction effect we have been
studying. This method of displaying interaction is particularly
effective if the data come from a two-level orthogonal
experimental design, since the plot then consists of just a pair
of straight lines, and, if the design has resolution at least 5, the
interaction is not confounded with effects ¢f other variables.
The interaction graph of Figure 8 complements that of Figure
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9. Figure 8 is model-based while Figure 9 is an exploratory
graph based on the raw data. Figure 8 contains more precise
information on the extent and significance of the interaction,
while Figure 9 displays response values directly, rather than
being based on differences of responses.
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Figure 9. Scatierplot as in Figure 3, with lowess curves added.

5. Discussion

This section discusses several issues related to the
implementation of these methods, and concludes with a proof
that the adjusted-Y plot is equivalent to the partial residual plot
when the model is additive with respect to the selected
predictor.

5.1 Implementation Issues

In order to create the special plots introduced here, a
multiple regression program must have data structures that
enable the system to analyze each term of the RSM, and to
determine which variables are involved. The Mulreg program,
from BBN Software Products Corporation, lets the user
specify, fit, and compare different models; the definition of a
model includes a list of terms containing such information.
Using this information, it is relatively simple to sort the terms
and compute the adjusted-fit functions by calculating the B's
from the b's and certain sample moments, as discussed in
Section 3.1. The confidence intervals for the effects and
interaction graphs can then be computed as described in
Section 3.2, The following paragraphs discuss the rationale
for several of the choices which the system makes in forming
these confidence intervals.

Choice of comparison values in the effects
graph. The effects graph ot Figure 7 is based on three
adjusted-fit curves, one fur each predictor. The center of the
i confidence interval is of the form f,00) - £,(x’), where x and
x"are chosen separately for each j so that:

(1) x and x" are within the sample range of x,, and
{2) the absolute difference If)(x) - f,(x) is maximized, and
(3) if x; is measured on a numerical scale, x'<x.

If £(x) is linear, these constraints imply that x = min(x,.
CXpde X o= max(xy, ., X)) I fx) s quadratie, the
svstem determines the extreme point of £ as x" = -B / 2B,..




If x" < min(xyj, ... , Xpj) Or if x" > max(xyj, ... , Xpy), then x
and x" are chosen as for the linear case. Otherwise x" replaces
either min(xyj, ... , Xpj) or max(xyj, ... , Xpj), $O that
condition (2) above is satisfied. If fi(x) is a cubic or higher
degree polynomial, then the system evaluates f(x) at min(xy,
.-+ » %nj) and max(xyj, ... , Xn;) and at nine equally spaced
points in between, and then chooses x and x' to maximize
Ifj(x) - fj(x)l from among these eleven points, resulting
sometimes in an approximate maximization of Ifj(x) - f;(x")l.

If x; is a categorically scaled variable, x and x' are the two
categories having the extreme values of fj.

The interaction graph described in Section 4.2 and shown
in Figure 8 repeats the comparisons of the effects graph for
two variables which share one or more interaction terms in the
model. The choice of points for the second variable at which
the contrasts for the first variable are repeated is made as
follows: If the second variable is categorically scaled, the
contrast is repeated at every level of the variable. If the second
variable is continuous but enters the model only linearly, the
contrast is repeated only at its minimum and maximum values.
If the model contains higher powers of the variable, the
contrast is repeated at the minimum, maximum, and midrange
of its values in the sample.

Simultaneous confidence intervals. The confidence
intervals within a single effects graph or interaction graph are
not joint confidence intervals. The stated degree of confidence
pertains to each interval separately. However, if a particular
adjusted-fit function has more than one degree of freedom for
contrasting x-values, as will happen if the function of a
continuous variable is quadratic or higher order, or if a
categorically scaled predictor has three or more categories,
then the Muireg program adjusts the confidence interval to
account for the post-hoc manner in which x and x' are
selected.

If f;(x) is a polynomial of degree p, then the Scheffé
technique of replacing the t(df, 1-0/2) percentile in equation

(4) by the percentile \jp F(p, df, 1-a) is used. In the case

of a categorically scaled predictor, a Bonferonni adjustment is
made: the t(df, 1-0/2) percentile is replaced by the percentile
t(df, 1-a/m(m-1)), where m is the number of categories being
compared.

Confidence intervals in the interaction graph described in
Section 4.2 are computed using the same tabled critical values
as the effects graph of the same contrast. In Figures 7 and 8,
the intervals displaying contrasts with respect to K use the
Scheffé method with 2 degrees of freedom, while the other
intervals use the percentile t(df, 1-a/2), since the fitied
function is linear in Pn and Ca.

Chuice of error term. Mulreg usually uses the mean
squared error of the residuals (mse) in the computation of the
confidence intervals for the cffects graph and the interactions
graph, as discussed in Section 3. There are three
circumstances in which another quantity is substituted for the
residual mean squared error in the formulas.

First, if the data for the multiple regression contains
replications, the system computes a mean square for “pure
error” based on the response variation within groups of points
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having the same set of x-values. The confidence intervals in
the Mulreg effects graphs and interactions graphs use the pure
error mean square instead of the residual mean square
whenever there are at least four degrees of freedom for pure
error and the usual F-test for lack of fit is significant at the
10% level.

Second, if a mode! contains an interaction between a fixed
effect and a random effect, then the confidence interval for the
contrast of levels of the fixed effect will use the interaction
mean square rather than the mean square residual.

Third, if a robust bisquare regression is being used rather
than a least squares fitting algorithm, the robustly estimated
coefficients and a robust version of the mean square error are
substituted into the formulas.

Transformations. If the response variable has been
transformed, the adjusted-Y, the effects graph, and the
interaction graph are all computed and displayed on the
transformed metric. In order to make these graphs more
interpretable in such cases, the program can use a "matched”
scaling of the response transformation, as recommended by
Hoaglin et. al. (1983, section 4E).

5.2 Proof of Equivalence to Partial Residuals
Suppose that x; enters the model additively, so that the
fitted least squares model is of the form

yi =Fi(xijt) + F'(Xj2, ... . xj)) + ¢, i=1, ..., n

Then, using (1) and (2), the adjusted-Y values with respect to
the first predictor variable are

)’imj = Fi(xin) + F* +¢;,
while the corresponding partial residuals (which are
augmented partial residuals if Fy is not linear) are

pri =y + (Fy(xi)) - Fy) +e;.

Comparing these formulas, we note that they are equal if
y = F\l + F° >

which is the requirement that the average of the fitted values
from the regression equals the average value of the response.
As is well known, this will be true whenever a least squares
regression model contains a constant term, or whenever some
linear combination of the predictor terins is constant for all n
cases. If the model cannot be reparametrized to contain a
constant term, then, depending on how the partial residuals are

defined, they may differ by a constant amount from the
adjusted-Y values.
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ABSTRACT

Stochastic optimization procedures
have been shown to be efficient methods
for finding global extrema of objective
functions. In this article we report
computational results obtained using the
generalized simulated annealing method
on a set of standard global optimization
test problems. The results are compared
to those obtained using a self-
regulating mechanism which chooses a
random step distribution based on the
local topography and the currently
specified annealing temperature.

INTRODUCTION

The problem of finding the global
extremum (assumed to be a minimum here)
of a real-valued function has been an
important one for a long time. There
has been a recent increase in interest
in solving global optimization problems
using stochastic methods which, though
computationally intensive, are efficient
because of the increased speed of compu-
tation now available. These methods
combine some form of sampling (usually
random) and local search procedures,

The better-known stochastic optimization
methods have some very attractive beha-
vioral properties and have proved to be
efficient search procedures over a wide
range of objective function topogra-
phies, including problems with high
dimensionality and multiple extrema,

A stochastic method based on the
simulation of the cooling of a liquid
substance was shown to be useful for
function optimization by Kirkpatrick,
Gelatt, and Vecchi (KGV)(1983)., Called
"simulated annealing," the method has
proven to be very useful for solving
large combinatorial problems as documen-
ted by KGV and others, including NP-hard
problems like Bonomi and Lutton's (1984)
work with the traveling salesman prob-
lem. The method also has attractive
theoretical propertics for discrete
spaces; Lundy and Mees (1986}, Hajek
(1986), and Geman and Geman(1984) all
prove convergence of the algorithm under
various assumptions on classes of NP-
hard problems. The extensive biblio-
graphy compiled by Golden (to appear in
1988) contains numerous references of
applications to combinatorial problems.

Simulated annealing applied to func-
tions of continuous variables behaves
much like a random walk with a bias, but
lacks reasonable convergence behavior in
many applications. Certain modifica-
tions can be made to hasten the method's
convergence, such as the stepwise para-
meter adjustment of Vanderbilt and Louie
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UTATIONAL EXPERIENCE WITH GENERALIZED SIMULATED ANNEALING

Brooks and William A. Verdini, Arizona State University

(1984), who report solution times for
their method. The study reported here
investigates the behavior of the gener-
alized simulated annealing (GSA) method
introduced by Bohachevsky, Johnson, and
Stein (1986), which uses the current
value of the function to control the
random process; various aspects of the
method's behavior over a range of test
problems with continuous variables are
shown., Section 2 presents the simulated
annealing algorithm and its generaliza-
tion, and Vanderbilt and Louie's self-
regulating simulated annealing (SRSA)
algorithm. Section 3 gives the results
of its application to the test problems,
and Section 4 gives a summary with
comments.

APPROACHES TO SIMULATED ANNEALING

"Annealing" refers to the process in
which a substance is first melted, then
the temperature is lowered slowly. The
substance is allowed to spend a 1ot of
time at temperatures near the freezing
point of the substance, thereby allowing
the atoms in the substance to arrange
themselves into configurations with the
lowest potential energy. The desire is
to achieve a "ground state" (lowest
potential energy) arrangement of atoms
at each temperature. This ground state
configuration occurs when the potential
energy (function) is at its global mini-
mum for all possible arrangements of
atoms at that temperature. KGV give an
interesting history of how Metropolis et
al. (1953) developed an algorithm to
simulate this annealing process for any
particular substance. Starting with a
substance with an arrangement of atoms
at potential energy E, the Metropolis
algorithm simulates

- a new arrangement of atoms
resulting in a change in
energy, denoted AE;

- If AE is negative, accept
the arrangement by letting
that be the new arrangement
of atoms for the substance:

- If AE is positive,
the arrangement with
probability of exp(- A E/KgT)

accept

where T is the temperature
of the substance and Kg is
the Boltzmann constant.

The simulation "moves"
ration to configuration,

from configu-
following a




random walk with a bias to lower energy
values, since the probability of accep-
tance of lower-energy arrangements is
greater. The simulation assumes the
system evolves into a Boltzmann distri-
bution.

The analogy to more general appliica-
tions is clear: the energy function is
any objective function, the arrangement
of atoms is the combination of indepen-
dent variable values, and the rearrange-
ment of atoms is equivalent to the
iterative improvement of function values
by changing variable values. The useful-
ness of simulated annealing as a func-
tion optimization procedure is that it
can move to detrimental function values
in its optimization search, which pre-
vents it from being trapped in local
minima. In addition, the implementation
of the search for the global minimum
does not require any derivatives, only
function evaluations, making it both
analytically and computationally conve-
nient.

This standard annealing method is
handicapped in function optimization,
however, because there is no "cooling"
(referred to as an annealing schedule);
that is, the temperature of the subs-
tance remains fixed and, therefore,
excessive numbers of moves are made in
searching for minimum-energy configura-
tions. The generalized simulated
annealing method provides a gradual
(though not necessarily monotonic) dec-
line of temperature values thereby redu-
cing the probability of acceptance of a
higher-energy, and detrimental, point as
the function values approach the (esti-
mated or known) global minimum of the
function. This is achieved by automati-
cally setting the acceptance probability
according to the function topography.
The change in position is governed by a
specified acceptance probability which
depends on the parameters of an accep-
tance probability function. This func-
tion decreases the probability of moving
to a new location as the algorithm prog-
resses,

Simulated annealing has an exponen-
tial acceptance probability function so
that the probability of moving from the
location at the i-th function evaluation
to the new location corresponding to the
(i+1)-th evaluation is
pi = GXD(fi*(fi - fi_._l)*l() .

This was generalized to

pi = eXp(f?*(fi - fi+1)*K) .

this
_1.

Although any g < 0 can be used,
investigation considers only g =
Standard simulated annealing is
recovered from this generalization by
setting g = 0 and using a predetermined
set of values for K and a predetermined
number of function evaluations at each
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K. Vanderbilt and Louie set g = 0 and
use an indexed set of coefficients for K
to force p; to approach 0. 1In addition,
they suggested a method for self-
regulating the determination of the steo
size and the step distribution.

The GSA algorithm can be summarized
using the following notation. Let F(x)
be the real-valued function of interest
evalwmted at point X, an element of some
bounded subset of R®. Let Z be the
global miaimum value of F and let x_ be
the initial set of independent variable
values. The algorithm proceeds by:

1. Selecting x, (randomly or
based on otger available
information) and computing
Fo = Fixg).

2. If this value is close
enough to Z, stop; otherwise

5. Choose a direction from the

uniform distribution on the

unit hypersphere centered at
Xy Generate unit direction
for U:

2 2 2
U; = Yi/(Yl + Yz + e t Yn)1/2l
i=1, ... ., n

where Y. is a standard
normail éeviate.

4. Choose a step size Ar and
determine a new set of
variable values

X = X4+ Ar*U .

5., If x is not in the bounded
support of F, generate a new
x; otherwise,

6, If F(x} < F,. accept x by
setting x, = x and F, = F(x).

7. If F(x) > F, . accept x with
probability

p = exp(-Beta* (F(x)-F,)/F)
where Beta is a preset
parameter. Otherwise,

generate a new step.

8. Continue this random walk
until IFO - 2} <€ , some
arbitrary specified
precision.

To use the algorithm to search for
the optimum of a function, it remains to
set the parameters r {the step size]
and Beta [analogous to 1/(temperature of
the system)]. A large Beta causes less
movement than a small Beta. This is
typically done by trial and error.
practical considerations are to

The

1. select Beta so that the




probability of accepting
detrimental points is not
too small (the algorithm can
not escape local extrema) or
too large (totally random
walk):

2. select Ar so that the
probability of exiting a
local extremum is not too
small (in which case the
algorithm gets stuck too
easily) or too large (leaves
all extrema, including the
global), given Beta.

In practice, the algorithm appears to
perform best when about 60% (and between
50% and 90%) of the detrimental moves
are accepted. The performance of the
algorithm for a selected step size is
influenced most by (1) the variability
in the topography (values of F) over the
suppcrt of F, (2) the range of the sup-
port, and (3) the number of dimensions.
The next section illustrates this prob-
lem more specifically.

In addition to setting the parameters
which govern the acceptance probability,
a stopping rule must be specified., The
most straightforward method, comparable
to that used with several of the other
stochastic optimization methods is to
terminate the algorithm after a speci-
fied number of iterations without a
move. The results reported in the next
section are based on using 50 iterations
without a move as a stopping rule; major
shifts in this number, however, did not
appear to have a large impact on the
results,

COMPUTATIONAL RESULTS

Computational results applying a
collection of stochastic optimization
methods to a set of seven test functions
were first collected in Dixon and Szego
(1978), who proposed the standard test
functions. Two other stochastic optim-
ization methods were tested on the same
set of functicns by Rinnooy Kan and
Timmer (1984, 1987); the specific coef-
ficients for the test functions are
given in Dixon and Szego. In this sec-
tion, summary measures of the perfor-
mance of the GSA algorithm are given for
the same set of functions.

First a brief discussion of each
problem is presented below followed by a
summary list of the problems, and final-
ly the solution results are presented.,

The Goldstein-Price (GP) function is
a two~dimensional function with three
local and one global minima. An inver-
ted view of the function is given in
Figure 1. It shows the smoothness of
the function along with the minima .
Figure 2 shows ‘the mean number of eval-
uations for various values of the param-
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eter Beta and the step size., For any
specified pair of parameter values, the
variability in number of evaluations to
termination is due to differences in the
search path taken because of different
random number seeds. This variability
can be substantial in terms of number of
evaluations, but for small problems such
as this one the differences in CPU time
are negligible.

The Branin (BR) function is a two
dimensional function with three minima,
all global. It is shown with an illus-~
trative search path in Figure 3. Figure
4 shows the sensitivity of the mean
number of evaluations to the two param-~
eters for several representative values.

One function (H3) of the Hartman
family is a three-dimensional function
with five minima: four local minima and
one global. The actual global is not
the one reported in Dixon and Szego
(1978); this function was difficult for
GSA because the function is virtually
flat in one dimension at the global, so
the independent variable is unstable in
that dimension prior to termination of
the algorithm, The global found in this
test was (approximately): (.11, .555,

Another function (H6) of the Hartman
family is the six-dimensional version of
H3. It was more stable at the global
and, surprisingly, easier for GSA to
terminate than the three~dimensional
function. This held true for a wide
range of parameter values and a large
number of random seeds, although this
performance does not seem to hold true
for the other methods tested. Figure 5
summarizes the mean number of evalua-
tions required on these test functions
for some representative parameter
values,

Three functions from the Shekel fam-
ily - (85), (87), (510) - were also
tested. This series of functions in
four dimensions has 5, 7, aud 10 minima,
respectively, each including one global
minimum., This function family 1s the
most difficult for the GSA method. A
two-dimensional version shown in Figure
6 illustrates the reason: the depths of
the local minima are great relative to
the region of attraction at their
mouths. The remainder of the surface is
largely flat so that large step sizes
tend to step over the regions of attrac-
tion and small step sizes fall in the
local minimum they first encounter and
are never able to escape.

The GSA algorithm was started from a
number of boundary positions and one
internal position and Figure 7 shows
that the proportion of search paths
terminating at each of the minima is
proportional to the depth of the mini-
mum, so that the largest proportion of
searches terminates at the global. This
is because the areca of attraction for a
minimum is proportional to its depth.




GENERAL SOLUTION METHOD

The precision of the solutions
depends on the step size. The most
efficient method for determining the
global minimum of a function with appro-
priate precision was to first conduct a
global search with a larger step size
proportional to the volume of the bound-
ed support for F in R®, This phase
proceeded by starting the GSA algorithm
from several remote boundary positions
and running 100 independent random
search paths from each starting location
(with reasonable parameter values deter-
mined by pre-sampling the function) to
give some indication of variability in
solution times and paths. The global
phase located all the minima in all the
test functions {except the shallowest
minimum in the 10-minimum Shekel func-
tion). GSA always terminated at a mini-
mum. Then the step size was adjusted
for precision and a local search was
conducted in the region of each of the
minima found in the global search. To
determine which local minimum is the
global, a local search should be done in
each region identified by the global
searches. The GSA algorithm was run 100
times in each local region and found the
value of the local minimum for that
region for all runs on all functions.
Using this general approach the GSA
method found the global minimum to every
test function to any arbitrary precis-
ion; the algorithm did not terminate at
the global on every run for some func
tions, but multiple runs resulted in the
highest proportion locating the global
minimum for all the functions., Local
searches always discriminated between
local and global minima, and terminated
in the local regions in which they
began. This method also showed the
approximate minimum previously given for
H3 to be incorrect,

COMPUTATIONAL RESULTS

Table 1 gives a summary of the test
functions described in this section and
the parameter settings used to reach
solutions, Table 2 lists the other
global optimization methods used on
these test problems.

The proportion of global searches
terminating at the global is listed in
the summary chart of computational re-
sults presented in Table 3. All other
searches terminated at a local minimum.

Table 3 gives the number of function
evaluations to termination for the var-
ious methods used on the test functions.
Table 4 gives the same results in terms
of standard time units where one unit is
the CPU time to do 1000 evaluations of
S5 at a specified location.
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The results reported for GSA are the
average time over 100 trials at the
parameter values given in Table 2, star-
ting from some remote boundary point in
the support of F. The test results for
the other methods are the averages of 4
independent runs and no variability
measures or parameter settings are
available.

What Tables 3 and 4 do not show is
the sampling necessary to determine
reasonable values for the parameters.
This is not extensive, given initial
settings related to the function proper-
ties, but is a component of the solution
process (as it is for some of the other
methods) .

SUMMARY AND CONCLUSIONS

Computational experience with the
generalized simulated annealing method
for small problems over continuous var-
iables indicates that the use of GSA may
have some promise for problems of this
type. The results are compared to a set
of stochastic global optimization meth-
ods which represent some of the best
alternatives available, GSA appears to
be competitive in terms of sclution
times as well as reliability on this
class of problems. The number of eval-
uations should be interpreted correctly:
the number of local evaluations must be
done for each of the minima located by
the global search. The disadvantage of
this procedure is that it reqguires a
large amount of user interaction re-
starting the procedure at different
points. The advantage of the procedure
is that for small problems like these,
this method provides a microcomputer-
based ability to solve problems that we
were not able to solve using Eureka, a
commercially available micro-based
steepest descent non-linear optimization
package.

There are several potential modifica-
tions that could make the algorithm more
efficient. Two current concerns are its
sensitivity to the value of the paramet-
ers which govern the probability of
acceptance (and to random seeds), and
its lack of an operable stopping rule.

Results of using the algorithm on
large~dimension continuous-variable
problems (50 or more) have not been
reported., Although it has proven suc-
cessful on very large combinatorial
problems, the behavior of the algorithm
on these small problems with continuous
variables indicates that there appear to
be some serious potential problems for
the algorithm to be a useful "general
purpose" tool for solving very large
problems (over 100 dimensions, say) with
continuous variables. The method is
sensitive to the parameter values deter-
mining the acceptance probability, the
variability with respect to the random




seed is significant, for functions that
are not very "smooth" it appears to be
slow, and the two-phase procedure of
global and local optimization requires
substantial interaction on the part of
the user.
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Control led random
search (CR)

Price (1978)
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Figure 4.
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SIMULATED ANNEALING IN THE CONSTRUCTION OF EXACT OPTIMAL DESICNS

Ruth K. Meyer, St. Cloud State University
Christopher J. Nachtsheim, University of Minnesota

Introduction

Exact optimal design of experiments is
concerned with specifying n points from e
design space at which observations are to be
taken in order to achieve precise estimation.
A linear model of the furm

Y =Xt + ¢

is assumed, where Y is an nxl vector of
observations, X is the nxp design matrix,  is
a pxl vector of unknown regression parameters,
and ¢ is an nxl! vector of uncorrelated
experimental errors with mean zero and
constant variance ¢?. The ith observation y;
is obtained at a vector-valued point x; in a
q-dimensional compact design space X , and
the corresponding row of x is written f'(xi).
Tor example, consider a second order response
surface model with two factors,

£'(xg) = (1,xi1,%42,%11%,x12%,%11%x12).
If the parameters are estimated by least
squares, the variance of the estimate of i is
given by  -2(X'X)"! The variance of the
fitted values at x; is proportional to

d(xg) = £ () (XX (x1),

termed the variance function.

Designs are chosen wusing one or more
optimality «criteria. Generally such criteria
are represented by functionals on the pxp
covariance matrix (X'X)-lo? (See Steinberg
and Hunter, 1984, for a review). The most
widely applied criterion is D-optimality,
first proposed by Wald (1943). D-optimal

designs maximize 1X'Xl, in effect, minimizing
the generalized variance of the estimated
coefficients. If the errors (ci) are normally
distributed, the design minimizes the volume
of a fixed level confidence ellipsoid for ;.
If X* is the design matrix corresponding to
the D-optimal Cesign, the D-efficiency of any

other n-point design is given by 100(|X'X|/
1X*'X*§)1/P . If the D-optimal design is
unknown, as is often the case, the relative

efficiency,

R-efficiency = 100 |X}X |/ [X,'x,|)1/P,
is typically used to compare n-point designs
having respective design matrices X| and Xj.

Early efforts in  D-optimal design
construction wused mathematical programming
techniques to directly maximize iX'X} (See

e.g.,Box, 1966). Box and Draper (1971) used
Powell's direct search to maximize [X'X| in up
to 30-dimensional space. More recently
various exchange algorithms, for example,
Mitchell's DETMAX (1974), Federov (1972),

k-exchange (Johnson and Nachtsheim, 1983),
reduce the dimension of the search space.
These algorithms begin with a nonsingular

n-point design and iteratively add a point
from the design space and delete a point from
the current design such that a maximal
increase in {X'X, is obtained. The exchange
of design points typically is determined by
computing optima of the variasne function,
deleting the point with minimum variance of
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prediction and adding the point with maximum
variance. Convergence of the sequence,
however, may be to a locally optimal design.
When X is finite, various simplifications
result. For example, optimization of the
variance function can be globally obtained at
each iteration. Moreover, when there are N
design or 'candidate" points in x, there are
(n *N - 19) possible designs (Welch, 1982),
making an exhaustive search theoretically
possible. Welch (1982) developed a branch-
and-bound algorithm which guarantees global
exact D-optimal designs, but is
computationally infeasible with
dimensional problems.
However, design

large

spaces are often
represented by convex regions in RY, and the
simplifications described above are not
applicable. Cook and Nachtsheim (1980) and
Johnson and Nachtsheim (1983) have advocated
the use of exchange algorithms with embedded
nonlinear optimization routines to determine
the points to exchange. Cook and Nachtsheim
(1980) used a combined grid-Powell search in
an attempt to locate the D-optimal design.
Meyer and Nachtsheim (1987) implemented GRG2,
a eeneralized reduced gradient method for
nonlinear optimization, within the k-~
exchange algorithm.

One inherent difficulty associated with the
use of nonlinear optimization routines is the
convergence at local optima. As the dimension
of the problem and the number of terms in the
model increase, the number of local optima of
the variance function increases. In an
attempt to surmount the obstacles encountered
with current algorithms, we implement the
simulated annealing algorithm to directly
maximize the determinant of X'X, and evaluate
its performance on both finite and convex
design spaces.

Haines  (1987) applied the simulated
annealing algorithm to construct various
n-point optimal designs using several criteria
for polynomial regression of wup to degree S
and for the second order model with 2 factors.
Trial designs were constructed by successively

perturbing individual points. The algorithm
was most effective in constructing G-optimal
designs that minimize the maximum variance
function.

simulated
Bohachevsky,

We  modify the generalized
annealing method described by
Johnson, and Stein (1986) to maximize X'X .
This algorithm, which has the Mability to
migrate through a sequence of local extrema in
search  of the global solution and to
recognize when the global extremum has been
located" (Bohachevsky, et al. 1986, p. 209)
substantially improved the D-optimal 11-point
design for a specitic nonlinear problem with
many constraints given by Bates (1983).
Generalized simulated annealing makes the
probability of accepting a detrimental step




tend to zero as the random walk approaches the
global optimum.
Application of the Generalized Simulated
Annealing Algorithm

The models we consider are the first order
and second order response surface models.
The first order model

E(y) = 79) +§:Bij, ji=12,...,q9 has

p = q + 1 parameters. The second order model
E(y) = 8¢ +ZBjxj *‘;i;jkxjxk» jok = 1,2,...49

contains p = {q+1)(q+2)/2 parameters.

The construction of D-optimal designs
requires the maximization of \X'X\ » the value
of which 1is quite large particularly for
problems with many factors or many design
points. The values of the parameters used in
applying the generalized simulated annealing
method are simpler to adjust if the objective
function is defined as the maximization of
{X'X{1/Pp , where p is the number of parameters
in the model. To ensure the desired behavior
of the probability near the global optimum,
the objective function is defined to converge
to zero at the global optimum. The
maximization of IX'X|1 P is thus substituted
by its equivalent, the minimization of 3(X) =
Dmpax - X'X|1/p , where Dmax is the user's
prior estimate of the optimum determinant. If
the value of the maximum determinant is
understated and 3(X) becomes negative, Dpax is

increased and the search i< continued. If the
estimate is too large, Dpax 1is decreased to
ensure the objective function converges to

zZero.

Finite Design Spaces

The D-optimal design for first order models
has been shown to consist entirely of the
vertices of the g-dimensional hypercube (Box
and Draper, 1971 and Mitchell, 1974). The
candidate set contains 294 points; each
coordinate of xj is -1 or +1. For second
order models we ¢ssume each coordinate may be
-1, 0 or +1, defining 39 points in the
candidate set.

The algorithm begins with an nxq starting
matrix consisting of the coordinates of n
points chosen randomly from the candidate set.
At each iteration, a trial design is defined
by perturbing m < nq of the coordinates. If
the value of the objective function is
decreased, the trial design 1is accepted with
probability I. It the value is increased, the
trial design is accepted with probability

p = exp{- "1 (X)/iXg)!

where is a nonnegative control parameter,
.{X) is the change in the objective function
value, and (X ) is the current value of the
objective function. The appropriate values
for m and depend on particular problem
characteristics and are found by
exparimentation. As the algorithm is
executed, the value of m is gradually
decreasea to a minimum of 1 as the global
minimum is approached, in which case a single
coordinate change is made to define a trial
design.
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The steps of the algorithm with finite
design spaces are as follows:
1. Generate a random starting design, Xg.
2. Calculate $(Xp). If |#(Xg)i< e ,
go to 7.
3. Determine a trial design, X, by randomly
selecting m coodinates to change.
a. For first order models:
1f Xjq = -1, set X33 = +1.
If xjs = +1, set xy: = -1
b. For second order moéels:
If %35 = -1, set xjj = 0.
If xjj = +1, set x5 = O.
If x3; = 0, set xj5 = +1 with
proba%ility 5.
Set xj3;= -1 with probability .5.
4. Calculate tﬂe new value of the objective
function 4(X) and let
B30 = o(Xg) - ¢(X).
If Je(X)] <« , 80 to 7.
5. If 3(X) < ¢#(Xg), let Xp = X and
#(Xg) = ¢(X). Go to 3.
6. If ¢(X) >¢ (Xg),
let p = exp {- 243 (X)/+(Xg)} and
generate a uniform [0,1] random
variable, u.
a. If u > p, go to 3.
b. If u < p, let Xg = X and
$(Xg) = & (X). Go to 3.
Stop.

Convex Design Spaces
We consider the design space most often
used in experimentation, the q-dimensional
hypercube defined by
-1 < xij <1l;1i=1,2,...,n, j =1,2,...,q.
Since many of the optimal design points
occur at the vertices of the design space, the
algorithm performed better il the constraint
set on the design space was eluminated. A
useful transformation described by Box (1966)
and used by Atkinson (1969) for D-optimal
design computations is

Xjj = sin Yijs for i = 1,2,...,n and
j=1,2,...,q.

Then for all values of yjj, -1< x3; = 1.
A trial design matrix is determined by

perturbing each transformed coordinate by tue
amountAim*vij, where vjj is a random direction
in ng-dimensional space and 'm is the step
size. The trial design 1is accepted with
probability 1 if the value of the objective
function is decreased, and accepted with
probability p = exp{- _.; (X)/;{(Xg)} if the
value is increased. The values selected for 'm
and 5 depend on  particular problem
characteristics and are found by
experimentation. The value of ‘m is decreased
gradually during execution of the algorithm to
refine the design as the global minimum is
approached.

The algorithm for a convex design space
follows:
1. Generate a random starting des‘gn, Xj.
2. Calculate ((Xp). 1f  (Xg) .
go to 9.
3. Let Y, = arcsin Xjg.




4. Determine an nxq random direction matrix
V by choosing independent uniform [-1,1]
random variables, bjj, and computing the
components of V: vj; = bij/(Iibij)I/Z,
Let Y = Yg + .mV; let X = sin Y.
6. Calculate the new value of the objective
function $(X); let 1¢(X) = 3(Xg) - »(X).
If | 3(X){< ¢ , go to 9.
7. If (X)) <p(Xg), let Xy =X
and ;(Xg) = (X). Go to 3.
8. If (X) >i(Xg), let
p = exp{-...;(X)/:(Xy)} and generate a
uniform {0,1] random variable, u.
a. If u > p, go to 4.

v

b. If u < p, let = X and
(Xg) = *(X). Go to 3.

9. Stop.

Results

The algorithms were executed on the Cray-2
supercomputer at the University of Minnesota
using test problems for first and second order
response surface models on both finite and
convex design spaces. A detailed account of
the empirical results is contained in Meyer
and Nachtsheim (1988).

Conclusions

The generalized simulated
algorithm was wused to construct D-optimal
designs on both finite and convex design
spaces in an attempt to overcome the problems
of premature  convergence and/or computer
infeasibility with high dimensions encountered
with current algorithms. For the finite
design  space, the only algorithm currently
available for construction of globally optimal
designs is Welch's (1982) branch-and-bound

annealing

search, which is not recommended if N > 30.
Our  results suggest that the generalized
simuiated annealing algorithm can be simply

implemented and c<heaply used to search for
globally optimal designs on as manv as N =
1000 candidate  points, We have demonstrated
its utility for tirst order response surface
nedels having up to 10 factors, and {or secend
crider medels  with as many as 5 factors.  The
cost, however, is  that  D-optimality  is not
guaranteed.
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A SIMULATED ANNEALING
APPROACH TO MAPPING DNA

LARRY GOLDSTEIN MICHAEL S. WATERMAN

UNIVERSITY OF SOUTHERN CALIFORNIA

this area see 13!, [12,13!, [11}, [2".and [14].

It is perhaps not surprising that the double
digest problem in a member of the class of NP
complete problems, a class of problems for which

Summary

The double digest mapping problem that arises
in molecular biology is an NP complete problem
that shares similarity with both the travelling
salesman problemn and the partition problem. Se-
quences of DNA are cut at short specific patterns
by one of two restriction enzymes singly and then
by both in combination. From the set of result-
ing lengths, one is required to construct a map

no polynomial time algorithms are known. This
may be demonstrated by showing that a special
case of the double digest problem is an NP com-
plete problem known as the partition probiem.
fience, ithe double digest problem is at least as
hard as the partition problem, and itself belongs

. > Q P
showing the location of cleavage sites. In order to the class of NP hard problems.

to implement the simulated annealing algorithm, Given that therefore it is unlikely one will

one must define approsiate neighborhoods on the find a fast, polynomial time algorithm to solve

. . . . . J Tores .
configuration space, in this case a pair of permu- the double digest problem, one may turn to the

. . e 51 ate ine aleor) -
tations, and an energy function to minimize that simulated annealing algorithm. a recent proba

C g bilisti ce at has enjoyed sc 5 55
attains its global minimum value at the true so- vilistic procedure that has enjoyed some success

fution. We study the -rformance of the simu- on combinatorially hard problems of this nature.

[ . . \ ieats
lated anncaling algorit n for the double digest [his paper is a report on the application of

. . . he simulate P vall aleori -
problem with a particular energy function and a the simulated anncaling algorithm o the dou

. . . . 5 1 TS N ’ 1 ~ 1 & 1Cs
neighborhood structure based on a deterministic ble digest problem. We first give a mathematical

procedure for the travelling salesman problem. description of the double digest problem. Next,
we show that the double digest problem is an
NP complete problem. In the section that fol-

lows, we give a description of the simulated an-

1 Introduction nealing algorithm i~ general, and state how it

may be applied to the problem at hand. Lastly,
The simnlated annealing algorithn has shown we conclude with some remarks on the effective-
proti~e on a varicty of combinatorially hard prob- ness of the procudere in this instance and on the
fetis, snchoas the NP ocomplete travelling sales- nominiqueness of s~olutions to the double diges
mnan problem 10 Below, we study the perfor- problea in general.

mance of an implementation of the shimulated

annealing algarithren on the danble digest map-

. .
g problens an NP complete problem arising 2 Description of the Double
i moleenlar biology, The double digest mapping Dig(‘St pr()blem
problem can be stated roughly as ©ollows A re-
s tion enzame cnts a strand of DNAL regarded The double digest problem can be stated as fol-
s o finite ~cquence over the foar lerter alphabet v~ A testriction enzvme eits a picce of DNA
PO e all aconrrenees ol pattern spes of length Loat all occurrences of a <hort specifie
Gttt sz the pattorne are charto e pattern and the lengihs of the resulting frag-
G o 6 s Ty el O e reniting vt are tocorded T e doabi digest problem
eprent oot e rocanded W eyt o we liave e dare the T ad fragneent lengrhis when
s Coody wd e ren et cach ez cd e s
' con credl Yoo e e an B by e
e R T \ Yl ' '
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B={h:1<i<m}

from the second digest, as well as a list of dou-
ble digest fragment lengths when the restriction
enzymes are used in combination and the DNA
cut at all occurrences specific to both patterns,
say

C- e 1<i<nph

only length information is retained. In general
A8 and ¢ will be multisets; that is, there may
be values of fragment lengths that occur more
than once. We adopt the convention that the
sets A, B,and C are ordered, that is, a, < a, for
1 < 7, and likewise for the sets B and C. Of
course

Z:a,* )_: by =

1<i<n l<1<m

}_: ¢ = L,

1<€1<n,

since we are assuming that fragment lengths are
measured in number of letters wilh oo crrors,
Given the above data the problem is to find or-
derings for the sets A and £ such that the double
digest implied by these orderings is, in a sense
made precise below, €

We may express the double digest problem
more precisely as follows, Let Sp denote the set
of all permutations on k objects. To. - S p
S call (o, ) a configuraiion. By ordering Vand
B according to ¢ and p respectively, we ohtain

the set of locations of cut sites

~ N L N TN R 1

Since we want to tecard only the focation of
U sites, the et s not allowed repetitio, s, tha
oo S i not o oaaiti-et. Now label the elements of
N oeneh that

~ -{>:,()' [EER T

With o,
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The double digest implied by the configura-
tion (o, ) can now be defined as the lengths that
result when the fragment is cut at the locations
indicated by S, that is, by

Clo,u) ~ {e(o,p) ceou) =8, 5,1
for some 1 < j < njq}

where we assume as usual that the set is ordered
in the index 1. The problem then is to find a
configuration (o, u) such that ¢ = C(o, 1).

We note for future reference that the function
J on the configuration space given by

Z (eilo,u) - ¢)*/e,

I<1<ng

flo.u)

attains its global minimum value of zero at the
configuration (o, ) if and only if this configura-
tion is a solution to the double digest problem.
Hence, we may consider an cquivalent formula-
tion of the double digest problem: find where f
attains its global minimum value of zero.

[

Computational Complex-
ity of the Double Digest
Problem

We demonstrate below that the double digest
problem is NP complete. It is clear that the dou-
ble digest problemn DDP as described above s
in the class NP, as a nondeterministic algorithm
need enly guess a configuration (o, 1) and check
in polynomial time if C(o.u) - ¢ The number
of ~teps to check this is in fact linear. To show
that DD is NP complete we transform the par-
tition problem to DDP. In the partition problem.
known to be NP complete 4 L we are given a finite
et Aosav A n. and a positive integer s(a) for
cach a - A and wish to determine whether there

exists o subset AT 4 such that




If ¥ .ca s(a) = J is not divisible by two, there
can be no such subset A’; else, consider as input
to problem DDP the data

A= {sax): 1 <k <n}

B ={J/2,J/2} andsetC = A.

It is clear that any solution to problem DDP
with this data yields a solution to the partition
problem through the order of the implied digest
C.

4 The Simulated Annealing
Algorithm

We now give a description of the simulated an-
nealing algorithm. The algorithm is based on
the following analogy with statistical mechanics.
To a given physical system, there corresponds a
function f that assigns to the state of that sys-
temn its energy. The algorithm mimics the behav-
ior of such a physical system moving from state
to state in order to minimize energy.

Specificaly, let V be a finite set of elements,
and [ a function that assigns a real number to
each element of V. The elements of V represent
the state of the system, and we think of f(v) as
the energy of the system when in state v.

In statistical mechanics, the Gibbs distribu-
tion gives the probability of finding the system in
a particular state. Introducing the temperature
parameter T, we write the Gibbs distribution as

mrlv) - erp{ flv)/T}/Zz,

where Zr, the partition function, is chosen such

that
X mr(v) - L.

s
For large vaices of T the distribution tends to be
uniform over V., while for small values of 7" the
favorable elements of V, that is, those elements of
V for which f(v) is small, are weighted with large
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probability. Therefore, a probabilistic solution
to the problem of locating an element v ¢ V
for which f(v) is minimized is given by sampling
from the distribution #¢ for small T > 0.

One way this may be achieved is to simuiate
a Markov chain { X, },»0 with state space V that
has 71 as its stationary distribution and let it ap-
proach equilibrium. It is possible to write down
an explicit formula for the transition law of such
a Markov chain.

Simulating a Markov chain of this type with
the parameter T fixed was proposed by Metropo-
lis et al. {10]. One may observe that in the con-
text of minimization, the smaller the value of T
the higher the probability of finding the state of
global minimum energy. Kirkpatrick et al. '8! in-
troduced the idea of cooling the system in the
hope that in the limit one would obtain the dis-
tribution 7, that puts mass one uniformly over
the states of minimum energy. In this way the
algorithm resembles the physical process of an-
nealing, or cooling, a physical system. As in
the physical analog, the system may be cooled
too rapidly and become trapped in a state cor-
responding to a local energy minimum; Geman
and Geman 6] (see also Hajek |7') showed that if
at stage n in the algorithm one cools the system
with a sequence of temperatures Ty, ,where T, | 0
and T, > ¢/log(n) with ¢ a constant that de-
pends on f, then the state of the Markov chain
converges in distribution to m,.

In order to simulate the Markov chain it is
required Lo specify, for each possible state v, the
collection of states N, where transitions are to
be allowed. We call such a collection of states
neighbors of a given state. Of course, we must
require each state to be reachable from any other
state through a sequence of neighbors.

Our neighborhood structure was motivated
by a neighborhood structure used in a simulated
annealing algorighm for the travelling salesman
problem 1!, which in turn was based on a de-
terministic procedure for that particular prob-
lem 9. In the travelling salesman problem one
is required to find the tour of shortest length that




visits n given cities in the plane. Hence, the con-
figuration space for the travelling salesman prob-
lem is the set of permutations, where a particular
permutation gives the order in which cities are to
be visited. For the double digest problem, as de-
scribed in section 2, a configuration is a pair of
permutations.

We now describe a neighborhood structure
for the travelling salesman problem( [1], 19)). I,
for a given permutation, or tour, ¢ we imagine
links connecting cities in the tour, we say that the
tour o is k-optimal, or k-opt for 1 < &k < n, if for
all tours that can be obtained from ¢ by break-
ing at most k& links, the tour given by ¢ is the
shortest. Thus, every tour is l-opt and only the
true best tours are n-opt. We define a neighbor-
hood system using the concept of 2-optimality.
For a given tour o = (iy,1s,..,1,) visiting city 1,
then 13 and so on, let the neighborhood of ¢ be
defined by

N(0) ~ {7 € Sui7 = (inin..

ijlsllnlk 1y~'7lj‘lsijslk-olw“'vln)
for some 1 < 7 < k < n}.

It is not difficult to see that this notion of neigh-
borhood allows one to transition from any state
to any other state through a sequence of neigh-
borhs.

For the double digest problem our configura-
tion space is a pair of permutations. Accordingly,
for this problerm we may define a neighborhood
of a configuration (o, 1) by

N(o.u) -

{(rou) 7 N(o)} - {{o.v) s v N(u)}
where N{p) are the neighborhoods used in the
discussion of the travelling salesman problem
above.

We conclude this section with an explicit de-
scription of the simulated annealing algorithm.

Let the initial state vy be an arbitrary cle-
ment of the configuation space S. At stage n, let

us say the state of the system is v {0, 4). Set
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T, = Tog_ﬁ Select a neighbor v € N, uniformly
from N,. For the case at hand, this selection
may be done in the following manner. Choose
to invert either ¢ or 7, each with equal probabil-
ity. Say o is chosen. We now randomly invert a
portion of the “tour” given by o in such a way
that all inversions are equally likely, yielding a
new “tour”, say r. Let v = (r,u). Compute
A = f(v) —~ f(u). If A < 0 then accept v as
the new state of the chain for iteration n + 1. If
A > 0, accept v as the new state of the chain
with probability p = exp{--A/T,} and keep u as
the new state for iteration n + 1 with probability
I-p

5 Performance of the Algo-
rithm

With the above framework in place, the simu-
lated annealing algorithm was run on both sim-
ulated and actual mapping problems.

The performance of the algorithm on large
simulated problems led us to suspect that in gen-
eral solutions to the double digest mapping prob-
lemy are not unique. In fact, under a certain
probability model, the number of solutions to the
double digest mapping problem increases expo-
nentially in the length of the segment [5. The
performance of the algorithm for these problems
is therefore conlounudd by tiie large number of
exact solutions.

For mapping the bacteriophage lambda,
45,360 base pairs in length, with the restriction
enzymes BamH1 and EcoR1 each which cut
iamhda into 6 pieces of distinct lengths for a
problem of size 66! 518,000, the algorithm
was able to find the correct solution in 29,702,
6895, and 3670 iterations in runs from three dif-
ferent initial conditions. [t is interesting to note
thit the solution to this actnal problem was in

fact unique. Further details may be found in 5 .
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Modeling Parallelism: An Interdisciplinary Approach

Elizabetb A. Unger

Department of Computing
and Information Sciences

Kansas State University

Abstract

One can easily conjecture that we humans have imposed
sequential solutions onto most problems, such are a better
match to our physical architecture. but we propose that
there are parallel solutions to many problems and these
are a better if they can be matched to our computer archi-
tectures. The discovery of problems involving parallelism
in many and diverse disciplines which are the subject of
current research efforts has been a simple matter, however
the development of methods which discover the parallel-
ism possible in solutions to a problem is not a simple
matter and is the focus of this research. This paper will
describe the model and discuss the current research efforts
in terms of academic contributions and the strengths
gained through the interdisciplinary group approach to
problem solving.

At Kansas State University a group of people from three
disciplines in two colleges has been formed to provide a
critical mass of researchers and to create broader base of
knowledge from which to draw to find an architecture-free
model which can oe used to express. in a natural way. the
potential concurrency in problem solutions. A partially
defired model based upon a conditioned datafiow which
incorporates the concepts of control flow based on
dataflow. of the description of an action at any level of
detail with subsequent further refinement if desired. of
repetition based upon partitions of data aggregates, of sin-
gle assignment of values to uniquely identify each incarna-
tion of data objects. and of partial computation, i.e., com-
putation which can proceed until a needed unavailabie
datum is encounter has been developed. The group has
four major foci to their work, 1) continuing development
of the theoretical foundation of the model. led by the com-
puter scientists, 2) use of the model to discover paradigm
parallelism models for particular problems at the smail
and the large granularity levels of detail, led by the statis-
tician and engineers 3) the development of methods of
determining the best fit of the discovered parallelism to
existing architectures, led by the statistician and engineers.
4) the continued implementation of a prototype on a dis-
tributed network of processors. led by the computer scien-
tists. All members have contributed to all phases.

The current status of our work included a model which
has been shown to contain a core of statements which
always describe determinate problem solutions for atomic
data types. A prototype is being used to study problem
solutions where the granularity of the parallelism is small.
On going research work involves providing the theoretical
basis for temporally partitioned data aggregates, the inclu-
sion in the prototype of partial computation. and limited
data structures and the development of models of existing
architectures using the mode! for the current multiproces-
sor architectures.

1.  Introduction
Traditionally, computing machine design and the choice of

problem solution has been predicated upon the sequential
expression of computation. The advent of multiple proces-

—

Sallie Keller-McNulty
Department of Statistics
Kansas State University
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sor architectures and computer networks requires a
different approach to problem expression to fully utilize
the available computational power. The primary com-
ponent of this approach is the division of a problem solu-
tion into computational units and the ordering ¢ the exe-
cution of these divisions. In tkis paper, a model/method
will be developed which is based on the examination of the
flow of data and on aggregation data to discover parallel-
ism in numerical algorithms. This method of parallel
computation seems to hold the great promise for statistical
application (Lafaye de Micheaux. 1984).

Unlike much of the current research in parallel algorithms
for statistical and numerical linear algebra problems, the
model/method developed here is architecture independent
{Heller 1978, O'Leary 1985,1980. Gokhale 1987]. Through
the fundamental ideas of dataflow computation [Dennis
1972] and spatial and temporal partitioning of data struc-
tures into computationly independent units {Unger 1978] .
the inherent parallelism in a problem solutions can be
specified without the traditional concerns of communica-
tion, synchronization, data sharing and physical architec-
ture [McBride 1983]. The architecture free approach to
parallel computing is prompted by the idea that only after
the inherent parallelism of a numerical method is
expressed as grouping of the data (not necessarily limited
to the data aggregates) does the architecture become a con-
sideration. Jamieson (1987) calls this the virtual algo-
rithm for a problem solution approach. Different architec-
tures will give rise to different sequencings of the indepen-
dent computational units from this virtual algorithm.

This paper is divided into three parts. Section 2 gives a
description of tlLe basic model/method we have developed.
This section is followed by a discussion of the concepts of
data and procedural abstraction. Section 4 deals with the
notion of the existence of a virtual algorithm with a
motivating example.

2.  Basic Concurrency Model/Method

In this section a mathematically based model which can
be used for concurrent computation is presented. This
concurrency model/method is built upon the concept of
representing both data and action as objects [Unger 1988b].
The fundamental principles of sequencing these objects
will be illustrated as well as how this sequencing can be
altered through the use of predicates.

Objects representing action can be aggregated into collec-
tions of objects resulting in more abstract action object or
disaggregated into several less abstract action objects. Each
action object can be represented as a S-tuple (s.m.a.r.t)
where s is a boolean predicate whose truth value deter-
mines when the action will be eligible for execution, m is a
list of materials (input objects), a is the name or designa-
tor of the action, r is a list of results (output objects). and
t is a boolean predicate whose truth value determines if
and when the action should terminate prior to completion.




For illustrative purposes. the following syntactic form for
an action object will be used,

[s] alm:r) {¢].

where the elements of m and r are separated by commas.
For example, computing the length of the hypothenuse of a
right triangle using the Phythagorean Theorem could be
expressed as shown in Figure 1.

Model Objects

Interpretation
Sqrt(temp3; c)

a’+ b2 = ¢

Add(temp], temp2; temp3) a® + b?
Sqr(a; templ) a2
Sqr(b; temp2) b?

Figure 1: Hypothenuse Computation

The model is data driven. This means that the time at
whick an action is first eligible for execution is when all of
the elements of m, the materials list, are available. Figure
2 gives the dataflow diagram (Petersen 1977, Karp 1966,
McBride 1987. Noe 1973). for the hypothenuse computa-
tion of Figure 1. It is drawn such that an action appears at
the first level, horizontally at which it is eligible for com-
putation. At level 1 of Figure 2, there are two actions
which can be computed concurrently, this represents the
only inherent parallel computation in the example. Note
that since the sequencing of computation is driven by the
availability of the materials, or inputs, the order in which
the syntactical statements are listed is immaterial. Thus
allowing each problem solver freedom to conceive the
problem solution in the most natural way for them.

©
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Figure 2: Data Flow for Hypothenuse Computation

Data objects in the model have two important components,
the designator and the corporality type. The designator
contains an arbitrary name assigned by the problem solver.
Corporality or the length of existence of an object provides
the capabilities to assure the delerminacy of the problem
solution results. Two corporality types of the model
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provide the concept of the single assignment of a value to
an object [Comte 1976). If the corporality type of a data
object is static, only one value may ever be assigned to
that data object. The default corporality of a data object
is dynamic. When the corporality type of a data object is
dynamic, the model adds a sequence indicator to the desig-
nator. This can be envisioned as the data object having a
series of incarnations, each distinguished by the sequence
indicator (e.g.. Xi.X;4+1.Xj42. ....) Objects with corporality
type of dynamic can be relerenced by their designator and
sequence indicator or by their designator alone. If a
dynamic object is referenced without a sequence indicator,
the latest available incarnation of the object is retrieved.
An additional corporality type of fluid is also defined by
the model. A data object with the corporality type of fluid
can change value with no incarnation indicator (like the
common implementation of variable in current program-
ming languages). Such objects are currently not allowed in
the determinant subset of the model and will not be dis-
cussed further in this paper.

Figure 3 gives the calculation of a Fibannoci sequence of
numbers as it would be described within the model. In
this example the data object designated x has a dynamic
type of corporality. The statements 1 and 2 indicate abso-
lute references to the incarnations x, and x;. The state-
ment 3 references the data object x in a relative fashion
directing that the previous incarnation is to be added to
the current incarnation to form the next incarnation.

Model Objects Interpretation

declare x dynamic:

assign (1; x.0) X, =1 (1]
assign (1; x.1) x=1 [2)
add(x.-1, x; x.+1) Xi+1 = X + X (3]

Figure 3: Use of Data Objects with Dynamic Corporality

The granularity of the action and data objects can vary.
The smallest granularity action object are those that
specify primitive actions, (e.g. +. -. *, /). Large granularity
action objects are ones in which considerable detail must
be provided in terms of the composing actions before prim-
itive actions are specified. The action objects specified in
Figure 1 are atomic actions, hence they have small granu-
larity. If the action objects in Figure 1 were aggregated
together into the action object Phythagorean(a. b: c). say.
then this would be an example of an object with larger
granularity. Syntactically this will be denoted as shown
in Figure 4.

Phythagorean(a. b: ¢)

{ Sqri(temp3; ¢)
Add(templ, temp2; temp3)
Sqr(a; temp1)

Sqr(b: temp2) } .

Figure 4: Phythagorean Action Object

This aggregate object has the designator, Phythogorean and
two input (material) objects, a and b. The use of this
aggregate object and the accompanying dataflow is shown
is Figure 5.




Phythagorean ( side,, side; : hypothenuse)

Phythagorean

Hypothenuse

Figure 5: Aggregate action object Phythagorean

Values for each of the data objects. sidel, and side2 are
required for the action object Phythagorean to execute.
We can use an aggregate data object say. A, composed of
sidel, and side2 and tnen the use of the action,
Phythagorean could be expressed as shown below.

partition A: side;. side;
Phythagorean (A: hypothenuse)

The use of aggregate data objects allows us to form a par-
tition of a data structure. For example, consider the pay
check computation (CHECK) for a company with 100
employees and two computers. If the input to CHECK is
pay_file which consists of 1000 records. we can aggregate
the data into 2 aggregate data objects pay, and pay, as
shown in Figure 6.

partition pay; : pay_ file. records 1-500,
pay: : pay_file, records 501-1000.

the call for action would be :

CHEC¥ ( pay, )

CHECK ( pay; )

Figure 6: Aggregate data object based on partitions

Predicates are used to govern when and if an action object
is started or when an action object is terminated prior to
completion of its specified task. Predicates which appear
on a defined action object are termed internal conditions.
Predicates used when an action object is requested (called
into use) are termed external conditions. For example. an
internal stimulation condition of [a=b] placed on the
Phythegorean action object defined above limits the
hypothenuse computation to isosceles triangles. Any
attempted use of the Phythegorean object on non-isosceles
triangles would result in no action. The action object
Averages given below illustrates the use of an external
simulation condition.

[count > 0] Averages(count, occurrences; a; 2,23 )
where the detail of Averages is: Averages (count,
occurrences: 8y a; a3)

{ Mean(count, occurrences; a;)

Median(count. occurrences; a;)

Mode(count, occurrences; a;) |

The action object Averages will be executed only if count
(number of occurrences or data points) is greater than
zero.

When executed, this action object returns three measures
of central tendency. the mean, the median, and the mode.
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If one wished to merely have a measure of central ten-
dency but did not care which one or did not want all
three, internal termination conditions could be used on the
object Averages as shown below.

[count > 0] Averages(count, occurrences; b)
{ Mean(count, occurrences; b) [b*]
Median{count, occurrences; b) [b*)
Mode(count, occurrences; b) [b*] }

The termination condition [b*] denotes the existence of a
value for b. In this case the first action of mean, median ,
or mode to return a value for b will cause the other two
actions to terminate immediately.

The model/method discussed in this section has a subset
which will guarantee determinant behavior. Determinant
behavior means that given same values for the input
objects, the same values for the output objects will resuit.
It should be noted that there are many situations, e.g., the
above action object Averages. in which indeterminism is
useful. A general insight into the determinant core is pro-
vided in Figure 7. If the model developed here is used on a
computing system, deadlock potential exists. Also, the
model requires there be exactly one viable source for each
output this requirement may be difficult to ascertain.

No objects with longevity type fluid must exist.

No internal stimulation or external termination
conditions may be used.

Number of requests in an action object must be
finite.

At any level of abstraction. there can be only
one viable source for each output object result-
ing from a request with an external stimulation
condition.

Figure 7: General Conditions of the Determinant Core
3.  Abstraction

A fundamental concept in this research is that inherent
parallelism in a problem solution cza be located by exa-
mining the problem solution at various levels of abstrac-
tion. This section explores the concepts of both action
abstraction and data abstraction.

Benjamin Whorf (19 ) has said "Language shapes the
thought and culture of those who use it." The
model/method described in Section 2 provides an environ-
ment or language that encourages abstraction by its syn-
tactic constructs and structure. Top-down statement of
solutions to problems is encouraged through the concept of
detailing or disaggregation of objects. Bottom-up siate-
ment of solutions to problems is encouraged through the
concept of aggregation or construction of objects.

Detailing of an object involves the replacement of the
object with a set of smaller granularity objects expressing
the same action or data, only in more detail. Detailing can
continue in a problem solution until either an interface
with an existing object occurs or an interface with a com-
putational device occurs. Aggregation or construction is
the reverse of detailing. Aggregation is the process of
defining a structure or collection of one or more objects.
The basic operations on the collection are defined within
the aggregate and are the operations used when

instantiations of the collection are manipulated.




Parallelism in problem solutions can be discovered and
described by examining the way in which aggregates or
collections of data objects can be manipulated. An aggre-
gation of data which results in aggregate tokens (or
groups) of the data objects which are computationally
independent represents a set of data aggregates which can
be scheduled in parallel or concurrently. These aggregate
tokens can be homogeneous, like in type and semantic
meaning, or nonhomogeneous. We will restrict our discus-
sion here to homogeneous aggregate tokens.

A series of examples from both office automation and
numerical linear algebra will be used to demonstrate the
concept of abstraction in a problem solution. It is interest-
ing to note that the model/method developed in Section 2
is equally effective in both of these areas.

The payroll check calculation example (See Figure 6) is one
example of a transaction processing problem solution.
Transaction processing means that the calculation of each
unit of computation, e.g., a payroll check, is independent
of the computation of all others units. In such situations
the input can be divided by partitioning the input file in
any fashion without affecting the output results. There
are consequences of the level of aggregation. For instance
if the pay-file was divided into 1000 aggregates which
form a partition then one cuuld cause 1000 different aggre-
gates to be sent to other processcrs. While in Figure 6
there are only 2 data object aggregates (tokens) which can
be sent, thereby reducing communication overhead.

There is no need for the data aggregates to form a partition
of the data although the potential for indeterminate com-
putation may occur if the problem solver creates code out-
side of the determinant core. For instance. there could be
more than one source for a given result (see the Averages
example).

Consider examples. this time involving a two dimensional
collection of homogeneous data objects which form a
matrix. In parallel solutions to numerical linear algebra
problems. the questions of what computation can be done
in parallel and what degree of aggregation of the data
should be used arise. The first question deals with locat-
ing the inherent parallelism in a problem solution. The
second question addresses the issue that a particular
numerical method will be of interest to people dealing
with both small and large dimensional matrices and the
fact that one cannot expect to have an infinite number of
processors available.

The rcpetitive computation of initializing each element of
the matrix to the same value can be thought of as creating
aggregate tokens which contain exactly one element of the
matrix and scheduling the entire initialization to occur
concurrently. This solution represents the maximum
amount of potential parallelism. In many situations, the
dimension of the matrix will greatly exceed the number of
available processors or this small level of granularity will
be impractical because of interprocessor communication
costs. Another solution to this problem would be to
aggregate pieces of the matrix into aggregate tokens and to
perform the initialization on the tokens in the aggregate
tokens sequentially. The initialization of each aggregate
token can occur in parallel.

A variation on the previous example would be the initiali-
zation of a matrix to the identity matrix. Again the max-
imum degree of parallelism would occur by letting each
element form an aggregate token and initialize everything
at once assuring that the partitions containing the diagonal
elements were assigned a one and everything else a zero.
An alternate aggregation of the matrix elements could con-
sist of forming an aggregate token that contains the diago-
nal elements and one or more aggregate tokens that collects
together the off-diagonal elements of the matrix. Initiali-
zation would then occur sequentially within each aggregate
token.

The calculation of X X using this outer product is an
example where one can consider the solution at several
levels of aggregation; for simplicity we illustrate this with
X. a 3 X 3 matrix. Figure 8 illustrates the calculation
vased upon data object aggregates which are rows. Figure
9 is a detail of the outer product calculation for the first
row of the matrix X. Clearly if X were larger we might
group the rows together as shown in Figure 10 and then
send these aggregate token to different processors for
potentially concurrent computation.

Madd - is an action
that is an element hy
element add for matrices

Figure 8: Quter product for X'X based or row partitions
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4. Virtwual Algorithm

Jamieson (1987) proposes that for any problem solution
approach there is a virtual algorithm. She also proposes
that this virtual algorithm can be mapped to one of a
number of architecture specific algorithms. Jamieson's
Virtual Algorithm Approach is depicted in Figure 11.

The virtual algorithm. for those problem solutions that
require no iterative computation, is defined by mapping the
inputs directly to the outputs. recognizing the renaming
and use of the inputs in intermediate computations. In
terms of the methodology discussed in this paper, this
means expressing the problem solution with the finest
degree of detail and complete disaggregation of the data
objects. Obviously this is a formidable task and two prac-
tical questions arise. First. is finding the virtual algorithm
useful? Second. since detailing is the reverse of aggrega-
tion, is it possible to gleen the useful information from the
virtual algorithm expressed at a higher level of abstrac-
tion?

If virtual algorithms could be found and expressed in a
reasonable way, all the inherent parallelism in a numerical
method could be understood and all possible sequencings
of the computations could be defined. We will use a
graphical representation of the Cholesky decomposition of
a matrix to study the usefulness of a virtual algorithm.
The answer to the second question remains open.

First we will consider the dataflow of two well known
Cholesky decomposition algorithms. The first is a tradi-
tional method given in Figure 12a and b and the second
given in Figure 13a and b was discussed by O'Leary and
Stewart (1986). Neither of these dataflow diagrams
represent the virtual algorithm for this numerical method
in that the renaming and use of the original inputs has
been ignored. Figure 14 represents the virtual algorithm
for this numerical method. Within the dataflow graph of
Figure 14, each primitive action on the original inputs is
represented at the earliest time frame (level) in which the
input for that action is available and for which the
corresponding predicates are satisfled. The diagram of the
virtual algorithm maintains the vertical positioning of
actions corresponding to tim:. CObscove that the dztaflow
of the traditional algorithm of Figure 11b is equivalent to
sequencing the computation according to horizontal planes
cutting the diagram at each time frame. The O'Leary and
Stewart method of Figure 13b is also evident in the virtual
algorithm diagram. That computation proceeds in the
order given by the vertical planes shown in Figure 14.

5. Conclusions

This research is direc ! toward the discovery of inherent
parallelism (or the viitual algorithm) for a given problem
solution approach. A concurrent method/model which has
a graphical form and a linear syntactic form has been
presented which can be used as a tool for parallel algo-
rithm development. One advantage of the location of such
virtual algorithms is the potential of mapping these algo-
rithms to optimal architecture specific algorithms.
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ASYNCHRONOUS ITERATION

William F. Eddy

Mark J. Schervish

Department of Statistics, Carnegie-Mellon University

1 Introduction and Summary

Solutions to fixed point problems, solutions of
equations, and maximizations often involve itera-
tive schemes. When each iteration consists of eval-
uating a vector of functions, the possibility exists
for evaluating the coordinates of that vector asyn-
chronously, that is, not necessarily all at the same
time. For example, consider the following iterative
method of finding the largest eigenvalue and corre-
sponding eigenvector for a symmetric m X m matrix

A, starting with a vector x°:
n
y = Ax" =
Ym
Chntl = mjax Y5
xﬂ+1 - C;.:.l)”

Under certain general conditions, the sequence

ci,¢2,... is known to converge to the eigenvalue
of A with largest absolute value and the sequence
x!,x%, ... converges to a corresponding eigenvector.

Now suppose that m is even and we write

_{ Ao
=4 )

where each of A¢ and A4; are (m/2) x m matrices.
We can form the sequence of “partial” iterations

x!, x2,..., where
no_ xo
X - n
X1
Y
Y = A@mmodn)X” = :
Yy
Cn+1 = Mmaxy;
j
el y
n4ld if n is even,
X)
I -

n
( o ) i 4 ol
cn+ly
Each iteration here only calculates new values for half
of the vector, keeping the other half the same as the
previous iteration.

An obvious question arises as to what is to be
gained by such a partial iteration scheme. For ex-
ample, in the eigenvalue calculation, might it be that
it takes fewer than twice as many “half iterations”
to achieve the same degree of convergence? Could it
be that the partial iterations do not even converge?
In this paper, we provide some theoretical and some
empirical answers to questions of this sort. One situ-
ation in which partial iterations have a great deal of
potential is in a parallel/distributed computing envi-
ronment. For example, in the eigenvalue calculation,
if one had two processors available, one could assign
all iterations invoving Ag to one processor and all it-
erations involving A; to the other one. The sequence
of iterations would not be the same as that described
above if both processors were allowed to work at the
same time. The reason is that iterations n and n+ 1
might be proceding simultaneously, hence iteration
n+1 could not be a function of iteration n. If the pro-
cessors ran at different speeds, the iterations would
not even alternate between the two halves of the vec-
tor. For this reason, such a sequence of iterations is
asynchronous.

In Section 2, we give a precise definition of asyn-
chronous iterations and the types of problems in
which they have been applied. In Section 3, we give
examples of some asynchronous iteration schemes
which can be used in most iterative problems. In
Section 4, we present some theorems giving condi-
tions under which asynchronous iterations converge.
In Section 5, we desribe the example calculations we
performed. These calculations are all based on the
eigenvalue problem described above. In Section 6, we
briefly describe a video animation systemn and sorne
videotapes we created to help visualize the sequence
of asynchronous iterations.

2 Definitions and Notation

Consider a mapping from a subset D of -
dimensional Euclidean space ®" to R",
O T R .

We will consider the problem of finding a fixed point

of this mapping by means of successive iteration. The
idea is that, since a fixed point x satisfies F(x) =
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x, then starting at an arbitrary point x°, we could
successively calculate x7 = F{x/~1). If the sequence
{x7}52, converges, it must converge to a fixed point.

Here, we consider a more general sequence of iter-
ations called asynchronous iterations.

Definition 1
A sequence of iterations x
asynchronous iterations if

. J-1
r;l = i s?
Fi(zy, ..

where L; is a nonempty subset of {1,...,n} listing
the components of x updated at iteration j and the
numbers s are integers indicating which iterate of z;
to use at iteration j. We require that s7 < j — 1 so
that the procedures can be realized in practics.

0 1

,xh, .o %, .. are called

i L
Lzie) i€ Lj,

For convenience we define

{Lijli=1,2,..}
{(s,osli=1,2,.. },
The types of functions F we will consider are Lip-

schitzian coniractions. These are a special class of
Lipschitzian operalors.

L
S

and

1

Definition 2 A function £ : D — R" is a Lips-
chitzian operalor if there exists an n x n matrix A4
with non-negative entries such that |F(x) — F(y)| <
A|x —y| where | -| and < are taken compounent-wise.
The matrix A is called the Lipschitzian matriz for
the operator F.

Definition 3 A function F : D — R" is a Lips-
chitzian contraction if F' is a Lipschitzian operator
with matrix A having p(A4) < 1, where p(.) is the
spectral radius of its matrix argument.

3 Examples

In this section, we present examples of this general
class of iterations, some of which can take advantage
of distributed computation. Because the definition
of Lipschitzian contraction requires the operator to
be essentially linear (at least localiy) we will consider
lLiere itertions of the forin

. ]
( z gL,

,)

1

j #1

r; = .

' A; . 1€ Lj,

‘,I

Iy"

th

where A; is the i'" row of a matrix A.
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3.1 Jacobi Iterations

Jacobi iteration is a standard procedure for solving
linear systems and is sometimes called the method of
simultaneous displacements. We describe a few of its
variants here.

Sequential veclor-wise evalualion: This iterative
scheme is designed to run in a single process. We
use

Lj = {1,...,1’1}
S‘Z: = j—-1L

Here, every coordinate of F is evaluated at the same
vector x=1 = (2171, . ., 2},7") and then the entire
vector is updated tox/ = (z1,...,2%). Thus, n com-
ponents are updated per iteration. This is the stan-
dard method of iteration mentioned at the beginning
of Section 1.

Independent component-wise evaluation: If n pro-
cesses are available, each one can be devoted to up-
dating a separate coordinate. That is, we use

L; = {(j—1modn)+1}

s{ = I_j—ljn.

n
What happens here is that no updated coordinate is
used in any iteration until every coordinate has been
updated. That is, every iteration consists of updating
a single coordinate, and then every n iterations all of
the updated coordinates become available for future
iterations. Thus, one component is updated per iter-
ation and the processes must be “synchronized” after
every n iterations; that is, the n+ 1st iteration cannot
proceed until the first n have all been completed.

Independent block-wise evaluation: If k processes
are available and n = gk, then each process can eval-
uate ¢ coordinates at a time. Here we use

L; = {ilmg+1<i< (m+ 1l)q}
) i1
s = |1

1]

where m = (7 — 1 mod k). Instead of updating only
one coordinate per iteration, we evaluate ¢ coordi-
nates per iteration. But we still wait until all n coor-
dinates get updated the same number of times before
releasing the updated values for use by the next iter-
ation. Thus, g components are updated per iteration
and the processes musy be synchronized aiter every
k iterations.

n

3.2 Gauss-Seidel Iterations

$iauss-Siedel iteration is another standard proce-
dure for solving linear systems and is sometimes




called the method of succesive displacments. Gauss-
Siedel iteration is generally considered preferable to
Jacobi iteration for solving linear systems. We de-
scribe a few of its variants here.

Sequential component-wise evaluation: At each it-
eration a single component of F is updated making
use of the most recent values ol all the other com-
ponents. In this method, we do not wait for every
n'h iteration to release updated coordinates for use
by the next iteration. We use

Ly =

v B
s; =

{(j — 1 mod n) + 1}
i1

That is, the coordinates are updated in sequence, one
at a time, but as soon as a coordinate is updated, it is
used in all future iterations. In the Jacobi methods,
it was always the case that, for j sufficiently large,
x/ = F(x') for some I < j. In general, this will not
be true for Gauss-Seidel iteration.

Sequential block-wise evaluation: At each iteration
a block of coordinates of size ¢ is updated making
use of the most recent values of all the components
not in the block. At the end of each iteration the
new coordinates are leased for use in calculating the
iterates for other blocks. We can use

L = {ilmg+1<i<(m+1)q)
o= -1

where m = (j — 1 mod &). At iteration j each coordi-
nate in a block is updated based on the same starting
vector x/~1. All future iterations make use of these
updated coordinates and ¢ components are updated
at each iteration.

3.3 Random Iterations

Randomness can enter into iterative schemes in one
or both of two ways. Either the components to be
updated, L;, may be uncertain, or the iterates to use
{sf} may be uncertain, or both. The reasons why
either or both of these items is uncertain may vary
from one iterative scheme to the next. We will de-
scribe two such schemes. In each of the schemes de-
scribed below, the randomness enters solely through
uncertainty about the order of completion of the iter-
ations. For this reason, we introduce the set C; as the
set of indices of all iterations which have completed
at the time that iteration j begins. [ur example, in
the sequential evaluation schemes described in Sec-
tion 3.1 and Section 3.2, C; is always {1,...,j — 1}.
In the independent (Jacobi) schemes, C; would be
a proper subset of {1,...,7 — 1}. For brevity, we
only describe block-wise evaluation schemes in this

section because component-wise schemes are special
cases with one component per block.

Asynchronous fized block-wise evalualion: If k pro-
cesses are available, separate the {1,...,n} into &
disjoint blocks. Each process can be assigned one
of the blocks of coordinates. Each process updates
the same coordinates at each of its iterations, using
the latest available iterates of all coordinates. A pro-
cess beginc a new iteration as soon as it finishes an
old one. When each block has ¢ coordinates, so that
n = gk, we can express this by

Li = {d(j-1g+1<i<jg}, 1<j<k
Li = Ly, j>k
s{ = max{k € Cjli € L},

where J is the random iteration number of the most
recently completed iteration. Here, the block of co-
ordinates to be updated at iteration j is uncertain
due to the fact that we do not know which of the
k ongoing iterations (processes) will finish next {and
hence begin the next iteration). After each iteration
completes, the newly updated coordintates become
available for use at all future iterations.

Asynchronous cyclic block-wise evaluation: If k
processes are available, and n = kg, the coordinates
are divided into blocks of size ¢ and the blocks are
updated cycliciy. Each iteration consists of updating
the next block of coordinates. Each process uses the
latest available iterates of all coordinates. A process
begins the next iteration in sequence as soon as it
finishes an old one. We can express this by

Li = {img+1<i< (m+1)q}
s max{k € C;|i € L¢}

N

where m = (j — 1 mod k). Here, the block of coor-
dinates to be updated at iteration j is known due to
the cyclic nature of the scheme. But which iterate of
each coordinate to be used in the next iteration is un-
certain until we know which previous iterations have
finished. After each iteration completes, the newly
updated coordintates become available for usc at all
future iterations.

Obviously, none of the block evaluation schemes re-
quire that n = kq. However, L; is simpler to express
when n = kq.

4 Theoretical Results

Several authors have proven that asynchronous it-
erations converge under certain conditions. These
conditions generally involve the number of times each
coordinate is updated, and how large s gets. In
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Section 4.1, we present two previous results on the
convergence of asynchronous iterations which impose
deterministic criteria on the performance of the iter-
ation scheme. In Section 4.2, we discuss probabilis-
tic criteria which lead to almost sure convergence of
asynchronous iterations.

4.1 Deterministic Results

The following conditions are assumed in the first
two theorems.

1. limj_.o 5! = 00,Vi
2. ¢ € L; infinitely often.

The first of these conditions guarantees that the ul-
timate step of the iteration depends on penultimate
steps rather than very old steps. The second of these
conditions guarantees that every component will be
updated many times. Chazan and Miranker (1969)
proved a theorem concerning affine functions.

Theorem 4 Chazan and Miranker (1969). If
F(x) = Ax+ b then the asynchronous iteralion con-
verges if and only if p(A) < 1.

Baudet (1975) was concerned with Lipschitzian con-
tractions.

Theorem 5 Baudet (1975). If F is a Lipschilzian
conlraction then the asynchronous iteralion con-
verges to the unique fized point of F.

The third theorem, due to Lubachevsky and Mitra
(1986), applies only to finding the fixed point of a
matrix A = ((a;;)) with p(A) = 1. Here F(x) = Ax.
In this theorem, for each i € L;, sJ,C 1s allowed to
depend on i. That is,

i~ 1
Ij = 1{
i = »
' Fi(eli .

Theorem 6 Lubachevsky and Mitra (1986). Sup-
pose A is a non-negative irreducible matrir and as-
sume there is i such that a;; > 0, £ > 0, and
s{(i) =j—1 forall j > 0. Then the asynchronous
iteration converges to a scalar multiple of the fired

pownt of A.

i¢L;
o2y e

4.2 Probabilistic Results

There are two types of probabilistic results with
which we will deal. The distinction depends on the
relationship between the way L; is chosen and the
times taken to complete the first j — 1 iterations. We
define the j* service time to be the time from the

start of the j*" iteration until its completion. The
first type of result deals with the case in which the L;
are chosen independently of the service times. The
second type of results allow the Z; to depend on the
service times. Throughout this section, we assume
that the service times are finite almost surely. We will
also assume that s] = max{k € Cj|i € L}, so that
there is no chance of a coordinate “getting stuck™ at
an old value when newer updates are available. The
only thing required in order to guarantee that the
two conditions at the beginning Section 4.1 will hold
with probability 1 is that

Pr(t € L;, for infinitely many j)

= 1foreachi=1,...,n. (1)
We will consider schemes which guarantee (1) both
when L; is independent of the service times and when
L; depends on the service times.

4.2.1 L, Independent of Service Times

Here we will describe some schemes which are de-
signed to guarantee (1). The basic idea of these
schemes is to choose the L; j = 1,... in such a way
that each coordinate has a positive probability of be-
ingin Lj for j = k,...,k+m for all sufficiently large
k and some finite m, and to be sure that the proba-
bility of each coordinate being in L; does not go to 0
as j increases. In this case, the law of large numbers
will assure that each ¢ appears in infinetly many L;
with probabilty 1. One way to arrange this would be
to choose a collection of r subsets of {1,...,n}, say

My, ..., M, such that
R
{1,....n} =M.
t=1
Then let L; be a random choice from M, ..., M, . If

the choices are made independently and
pe=Pr(l; =M)>0

for each t and all j, then the law of large numbers
guarantees that (1) holds with probability 1.

There is another class of schemes, which we will
call Markov schemes, which also guarantee (1). If we
let

pre = Pr(Lj = MLj_y = My)

for all j > k, then we can state some sufficient con-
ditions for (1) to hold. For example, if the transition
matrix P = ((p,)) is regular (i.e. P™ has all non-
zero entries for soine m) then (1) holds because each
coordinate has some positive probability of appearing
in at least one of the next m L, and the probability
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does not go to 0 as j increases. Also, if P # I, but
P™ =] for some m, then (1) holds. Asynchronous
cyclic block-wise evaluatio. is such as scheme. It cor-
responds to r = k£ and

_ |1 ift=(s+1modk)
Prs =9 o otherwise.

In this case P¥ = I. Many other block-wise schemes
are available among the Markov schemes, including
both deterministic and random choices of L;.

4.2.2 L, dependent on Service Times

When the L; are dependent on the service times,
various difficulties can arise. For example, a silly
algorithm for choosing Lj would be, for j > 10, if
any of the first 10 completed service times is greater
than 14 seconds, L; = {1}. Assuming that the ser-
vice time distribution had postive probability beyond
14 seconds, there would be positive probability that
all coordinates other than 1 would be updated only
finitely often. Rather than try to construct neces-
sarv conditions for ruling out this type of behavior,
we propose simple sufficient conditions.

Suppose that we choose r subsets of {1,..
M., ..., M, such that

.,n}, say

{1,...,1’1} = LTJAJ‘,

t=1

and each L; is required to be one of the M;. One
way in which the L; can be dependent upon the ser-
vice times is for L; to be a function of which A, was
updated in the iteration which most recently com-
pleted.

Asynchronous fixed block-wise evaluation is an ex-
ample of this type of scheme, in which L; is exactly
that M, which was updated by the iteration which
most recently completed. This requires that r = &
and that the first k of the L; are My, ... M in some
order. This scheme has the property that {1) holds.
There are other such schemes for which (1) holds.
That is, suppose that r = k and that the first £ of
the L; are My, ..., M, in some order. Let

oAl kY — {1 k)

be a one-to-one function. For j > k, let m; be
the number of the iteration which completes just
before iteration j begins.  Then (1)} will hold if

- = AM.. There are k!
Lj = My, where L, = M, There are k! such
schemes and asynchronous fixed block-wise evalua-
tion corresponds to f(1) =i, fori=1,..., k.

5 Empirical Results

In this section we describe the test cases which
we ran to compare the performance of synchronous
and asynchronous iterations on a parallel/distributed
system. The particular system of processors used in
the computations is described by Eddy and Schervish
(1986) and has been used in several statistical ap-
plications (Eddy and Schervish, 1987 and Schervish,
1988). A brief description follows.

5.1 The Distributed System Used

The parallel/distributed system used in the exam-
ples of this paper is a special case of a master-slave
system. In a master-slave system, one process acts
like a master, keeping track of control information,
such as L and S and which iterations are outstanding.
The slave processes perform the bulk of the numerical
calculations, such as function evaluations and matrix
multiplications. The system of Eddy and Schervish
(1986) uses the DECnet communication protocol be-
tween VAX computers running the VMS operating
system. The master process communicates with the
slaves by writing to and reading from nefwork devices
(DECnet’s way of defining communication channels).

Data-flow is implemented by having some of the
reading and writing done asynchronously. For exam-
ple, the master begins by assigning a task to each
slave. This is done by writing the appropriate data
and/or instructions to the network device associated
with each slave. The master then reads from the net-
work device, but does not wait for a response. Figu-
ratively speaking, the master says “Let nmie know as
soon as something arrives.” Then the master goes on
to the next slave. When “something arrives” from a
slave, the master deals with the response and sends
another task (if any remain) in the same way as be-
fore. On the other hand, each slave begins by reading
from the network device and waiting for a task to ar-
rive from the master. It then does its work, writes its
response to the network device, and waits for another
task. When the work is finished, the master can re-
lease the slaves or keep themn waiting for a brand new
set of tasks.

5.2 The Example Matrix

We used three different iterative schemes for find-
ing the largest eigenvalue and corresponding eigen-
vector (henceforth called the largest eigenvector) of a

matrix A. The matrix is a 499 x 499 circulant with
(.9 =7 in the (4, j) entry. The iterative methods we
used were based on the iterative algorithm deseribed
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in Section 1 and letting x° be any vector not orthog-
onal to the largest eigenvector.

The matrix used in the example has a simple eigen-
structure which we describe here. These results fol-
low from the theorems of Section 6.5.2 of Anderson
(1971). Our matrix A can be expressed as

249

A=T+> (94
izl

where A; is a matrix whose only non-zero entries
are 1s on the i*" and (250 — i)** sub- and super-

diagonals. That is, if A; = (agi)), then

. 1 flj—kl=i
a =4 1 if|j—kl=250-1i
0 otherwise.

Theorem 6.5.3 of Anderson (1971) says that the
eigenvalues of A; are

L . 2w os 2w
r % \219) ¢ (249)’

c 4m 4m
oS 249 , COS -24—9 B

248ni 248wi
¢ ——— ) ,cos .
®\ 249 )\ 299
That is, all but the largest one come in pairs of two
equal eigenvalues. The eigenvectors corresponding to

cos (Z24), for k > 0 are

cos (22£) sin (42%)
cos(zi}-) sin (éi—Z)
1 1

The eigenvector corresponding to the largest eigen-
value 1 1s (1, 1,...,1)7. Note that all A; have the
same eigenvectors. Since A is a positive linear com-
bination of the A;, the kP largest eigenvalue of A is
the same lincar combination of the k" largest eigen-
values of the A,. That is, the k*P largest eigenvalue

of Ais .
24 k R
2[;_]‘/1’2
N'ecos | —=—— 1.
1+ E (.9) cos( 519 )

i=1

In particular, the first three cigenvalues are approxi-
mately:
18.99999999992728,

18.73270191995797.

and
18.73270191995797.

The first two values are fairly close together, their
ratio being approximately 0.9859. Even the fourth
and fifth eigenvalues are large, being approximately
0.9460 times as large as the first one.

5.3 The Test Cases

We performed asynchronous iterations in double
precision, computing both the vector x/ and the ap-
proximate eigenvalue ¢; until the following conver-
gence criterion was met:

Convergence criterion: Wait until every co-
ordinate has been updated at least once and
stop as soon as both of the following two
conditions are met:

ley—c,-1l -16
* min{[c,], c,l_,H < 10
[ ] Z:;l(c)y:_l—rz)?
min{le,T.Te; 23T}

< 10718,

a1}

The first condition insures that the approximate
eigenvalue has not changed much and the second
insures that the product Ax/~! is approximately
Cj x/ -1

The test cases described here are the same cases
used in the videotape, however they are not the same
runs described there. The reason is that there is a
significant amount of time required, during the run,
to write the information used in the video tape. The
more processors used In a run, the more iterations
were done, and the more writing that was done.
The timings would not be indicative of the savings
achieved by multiple processors if we timed the writ-
ing of the videotape information. Because the runs
are not the same and the environment is stochastic,
the numbers of iterations will be different also.

where y¥ = z¥/ max{|zf], ...,

5.3.1 Synchronous Computation

We used a sequential vector-wise Jacobi scheme
starting with x” being a vector of numbers between
0 and 1, each chosen by a uniformm pseudo-random
number generator. The convergence criterion was
met after 2332 iterations and &hr 39min of wall-clock
time on a single VA Xstation 2000 dedicated to the
task.

5.3.2 Asynchronous Computation

For the asynchironous computations. we divided
the vector into nearly equal subvectors and updated
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one subvector per iteration. We used both a fixed
allocation and a cyclic allocation. In the fixed allo-
cation, one processor was devoted to each block of
coordinates, while in the cyclic allocation, whenever
a processor required another block, it was assigned
whichever block was next in the cycle.

Fixed Allocation We used an asynchronous fixed
block-wise scheme with k£ = 5 blocks, 4 of size 100
and one of size 99. After 2hrs 15min and 231535 iter-
ations, the convergence criterion was met. The five
processors were not identical. The third one was a
VAXstation 3200 and the other four were VA Xsta-
tion 2000s. The fifth processor was busy with other
work (unrelated to our calculations) to a greater ex-
tent than the other four. The numbers of iterations
performed by each of the five processors were

3753 3903 9413 3782 2304.

Notice that the smallest number of iterations is about
the same as the number of iterations required by the
Jacobi vector-wise allocation. The starting vector x°
for this calculation was a unit vector with 1 in the
first coordinate and 0 elsewhere.

Cyclic Allocation We used an asynchronous
cyclic block-wise scheme with & = 10 blocks, 9 of
size 50 and one of size 49. The starting vector x°
for this calculation was the same uniform pseudo-
random vector used in the Jacobi scheme. After 1hr
9min and 28818 iterations, the convergence criterion
was met. The 10 processors were all VAXstation
2000s or VAXstation Ils and the numbers of itera-
tions perforned on each of the 10 blocks were

2884 287" 2890 2888 2881
2890 2881 2888 2877 2865.

Since the 10 blocks were assigned to iterations
cyclicly, we did not keep track of how many itera-
tions were performed by each processor, but rather
how many iterations updated the coordinates in each
block. Notice that the 10 blocks were all updated
approximately the same number of times when con-
vergence occurred. There are two reasons why the
numbers are not all equal. Most obvious is that there
are still iterations ongoing when the convergence cri-
terion is met. This, however, would not account for a
difference of 35 iterations between two blocks. Such
a difference is due to the nature of the asynchronous
updatiug. Suppose a process finishes iteration & and
begins iteration j. If thi. processor was particularly
slow on this iteration, it may be that, for i € L,
k < 8. That is. some other processor updated the

coordinates in block L before the one which just fin-
ished, and the iteration which just finished must be
ignored (otherwise it might be a “downdating” rather
tban an updating).

6 Animated Videotape

In the videotape we display the sequence of itera-
tions for three different iterative schemes for finding
the largest eigenvalue and eigenvector of a matrix A
described earlier.

6.1 The Video System

A 512 x 512 x 8 pixel video frame buffer is in-
stalled in a VAX workstation to generate an RGB
video signal under program control. The signal is
translated by an encoder to NTSC video; NTSC is
the United States standard for home television. The
NTSC video signal is recorded on a 3/4 inch Umatic
VCR. This VCR has the capability to edit single
frames of video onto the tape under the direction
of a controller in an IBM PC/X'T which follows com-
mands generated by a program running on the VAX.

The crucial point in the application of thi: system
to the generation of video tapes is that the computa-
tions involved in generating a video image are quite
separate from the actual recording of the video tape.
A typical recording cycle requires about ten seconds
to record a single video frame because of the time re-
quired to position the tape in the VCR. On the one
hand this means that it takes a long time to generate
a video tape (about 5 hours per minute of completed
tape). On the other hand it makes a clear separa-
tion between the calculations needed to generate the
image and the actua! =vent of recording it. This al-
lows fairly massive computations to be involved in
the generation of the images without imposing the
visual time-lag in viewing the resulting pictures.

6.2 Description of the Animation

Figure 1 exhibits output fromn a laser printer which
shows what a single frame of the video tape looks like.
This single frame illustrates the values of the com-
ponents of a particular iterate. There is a bitmap
which is 512 x 256 pixels. Each of the 512 columns
is used to display a number. The 256 rows are di-
vided into 64 groups of four pixels each. Each of the
64 groups is used to display the value of a single bit
of the number in that column; all four pixels within
the group have the same color. A double precision
floating point number lives in 64 hits, On the VAX
where this was done eight of the 61 bits are reserved
for exponent and are ignored. The remaining 56 bits
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Figure 1: One Iteration From Eigenvalue Calculation, Cyclic Assighment

{of the fraction) are displayed with the most signif-
icant bit at the bottom and the least significant bit
at the top. Figure 1 is from a fixed-blockwise evalu-
ation, and the five shaded regions correspond to the
five blocks and the five respective processors.

In order to understand this more precisely, look at
the last 13 columns on the right of the bitmap. Using
white for 1 and black for zero these thirteen column
display the value

1042.99999999992728

The 56 bits in the floating point representation of
this number are

1000001001011 01082 00E0LI
1111101101111111110000000000

In the videotape one should read bottom-to-top and
white stands for 1. The reason the last 10 bits are
zeros is that we added 1024 to the value 18.99999...
to guarantee that all number had the same exponent.

Before viewing the actual video tape one antici-
pates (because of the standard theory of convergence
for this calculation) seeing a “wave” of convergence
sweep from bottom to top of the bitmap as the se-
quences of iterates converges to the solution. The
video tape exhibits exactly this convergence. How-
ever, and this is what is important about the exam-
ple, one also notices a number of additional features.
First, there is a “cusp” in the convergence; in Figure

1 this cusp appears approximately 50 columns (10%
percent of the bitmap) from the left edge. There is
also an “anitcusp” approximately 300 columns (60%
percent of the bitmap) from the left edge. Standard
theory does not adequately explain the presence of
these features although they are clearly related to the
eigenvectors associated with the second largest (and
smaller) eigenvalues. Second, there is an additional
effect which is also visible in Figure 1 but is more pro-
nounc~d in the animated sequence. Approximately
four bits above the “zone of convergence™ there is a
very high frequency band of alternating bits. The
“buzzing” of this band is very distinctive visaally in
the video tape and has no explanation known to us.
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ABSTRACT

We discuss results relevant to a class of neu-
ral networks that have close relationship to
existing techniques in applied statistics such
as density estimation, CXRT and projection
pursuit. The perspective of this presentation
is from that of approximation theory. We in-
dicate how some statistical methods might be
used to shed light on the behavior of neural
networks.

1. Introduction

Neural computing is a general approach to
computation that strives to use networks of
simple processing elements instead of tradi-
tional procedural algorithms to implement a
desired functional input/output relationship.
Although the foundations of neural computa-
tion go back over thirty years, there was a
long period in the 1970's during which inter-
est in the technology dwindled partly because
of some mathematically demonstrable limita-
tions described by Minsky and Papert in
[Mi69]. By the 1980's, researchers became
confident that some of the limitations de-
scribed by Minsky and Papert might be cir-
cumvented by making the underlying neural
networks more complex ( see for example
[PDPHo82, Ho85)).

There are two major ways in which networks
have been embellished to make them more
powerful. One involves the introduction of
feedback or stochastic mechanisms into the
networks thereby making them dynamical
systems capable of more complex behavior.
The other, on which we focus in this paper,

This research was partially supported by OfTice
of Naval Research grant N00014-87-K-0182
and Nationa! Science Foundation grant DCR-
8619103.
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is the use of multilayered networks with
theoretically unbounded order in the sense of
[Mi69). A fundamental advance with respect
to multilayered networks has been the dis-
covery of training algorithms that have
worked well empirically in many applications
[PDP]).

This paper addresses a number of problems
related to multilayered, feedforward, contin-
uous (MFC) networks. We emphasize this
restriction because many different ideas fall
under the general rubric of neural network
theory and, while we acknowledge the ex-
istence of other technologies (such as net-
works with feedback, various associative
memories, Hopfield-Tank optimization net-
works, Boltzmann machines, etc.), we can-
not pretend to deal with them all. Moreover,
we believe the class of MFC networks to be
the most promising for time series and other
statistical applications. Indeed, the classical
work of Widrow on adaptive filtering [ Wi62]
is perhaps the simplest manifestation of feed-
forward networks applied to statistical fil-
tering problems. Needless to say, those ideas
have proven to be extremely useful in appli-
cations such as channel equalization and echo
cancelling in real-time telecommunications
settings [ Wi85]. More recently, there have
been some interesting empirical studies done
in nonlinear time series prediction that indi-
cate some potential utility of neural networks
in such an application [La87, Mo88}].

We discuss some practical issues surround-
ing multilayered, feedforward, continuous
networks especially in the context of known
statistical techniques. The first question to be
discussed concerns identifying the class of
problems that can in principle be solved by
MFC networks. On that point, we have ob-
tained general results demonstrating that, at




least theoretically, networks with single in-
ternal hidden layers can be used to solve any
continuous approximation problem [Cy88a,
Cy88b]. Next, we discuss the class of prob-
lems that are feasibly (as opposed to theoreti-
cally) solvable by MFC networks. Finally,
we discuss procedures for determining
whether a candidate problem (as presented by
empirical input/output data) might be feasibly
solved by MFC networks.

In an area that is both promising and contro-
versial, it is perhaps important to outline our
perspective and philosophy on this general
area of research. Our primary interest has
been and continues to be the investigation of
numerical algorithms for signal processing.
We believe that MFC networks offer an
interesting and potentially powerful tech-
nology for solving certain signal processing
problems. At the same time, there are a
number of known statistical techniques that
share many basic ideas with MFC neural
networks - namely, density estimation,
CART and projection pursuit methods. We
will attempt to bring some of these connec-
tions to light.

2. Technical Background

The neural networks of interest to us are
multilayered feedforward continuous (MFC)
networks. In order to discuss such networks,
we introduce the notion of an N-node.

An N-node is a simple computational unit that
accepts some number of real-valued inputs,
applies an affine transformation to the inputs
and then applies some fixed nonlinear func-
tion to this affine transformation. The output
of an N-node is the output of the nonlinear
function. In the sequel, we assume for sim-
plicity that the nonlinearity is fixed for all
nodes but that the affine transformations are
of course node dependent. (The use of the
same nonlinearity is arguably the most inter-
esting case from an implementation point of
view since then all nonlinear components are
identical.)

Figure 1 graphically illustrates an N-node
while the simple function that an N-node im-
plements is given by

O(i)'ixi +0)

i=1

Here X =(xy, xp, ... , X ) are the real
valued inputs to the node, Y =(y{, yp -

¥m ) are real valued constant weights, 6 is a
real constant and o is some univariate func-

tion. The quantities yy, yp - , Y and 6

determine the affine transformation at the
node. An MFC network is built from such
simple N-nodes by composition in layers.

m
Ouput o Y, x; +8)
i=1

Pigure 1.
Input-output relation of a single neural node
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A sample network with two hidden layers

Figure 2 depicts a two layered MFC network.
Generalizations to networks with more layers
are done in the obvious manner. Without ex-
plicitly writing out the functional form of the
network output, let us simply express the
output as

N(X) = N(X,0)

where © is a large dimensioned vector of
the parameters in the network. These pa-
rameters include all weights and thresholds.
Viewed as such, an MFC network imple-
ments one function from a family of func-

tions parameterized by ©.

Now suppose that some system produces
samples of input/output data of the form

{(X (X)), L sis M}
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Here f is the real-valued response function of
the system - for input vector X, the system
output is f(X). Based on these observations,
an MFC network is sought that approxi-
mately interpolates the data and hopefully ex-
trapolates to be a good approximation of f
over the whole input domain of the system.

Thus we seek to find the parameters © that
minimize some error criterion where the error
is taken to be the difference between the ac-
tual system output and the network output.

Algorithms for adapting © to attempt to
minimize this error criterion are called
supervised training, learning, etc. algorithms.
Viewing the situation from the perspective of
nonlinear optimization, most of these learning
algorithms are gradient descent methods
whereby some estimate of the gradient of the
error function (gradient with respect to the

parameters ©) is used to update and improve
an estimate for © [Pa87).




Such empirical parametric model fitting is of
course the essence of much of applied statis-
tics and approximation theory and by no
means a revolutionary idea in its own right.
In fact, scientists and engineers have for
centuries used parametric models such as
polynomials, splines, rational functions,
Fourier series, exponentials and so on to in-
terpolate and extrapolate empirical data.

What then is the novelty of neural network
theory? From the point of view of MFC net-
works, we believe that the noveity lies pri-
marily in two quite different directions. First
of all, the kinds of parametric models being
used in neural network theory typically in-
volve sigmoidal functions quite different and
primitive in comparison with traditional alge-
braic or transcendental functions. The impli-
cations of using combinations and composi-
tions of such primitive functions for ap-
proximation are not yet clear although sig-
moidal functions that are normally used have
certain locality properties that suggest
robustness. Secondly, there is a
preponderance of case studies and examples
illustrating that MFC networks work
reasonably well across an array of seemingly
different applications. This is not to say that
the MFC network approach is the best
approach among many, just that it works
quite often. In this respect, there is a certain
similarity between MFC networks and sim-
ulated annealing {Ha85] - they both seem to
be reasonably good at solving many different
types of problems but for any given problem
there may well be a better way to solve that
problem. This fact alone begs for a better
explanation.

There is of course another important innova-
tion in that at some level of abstraction, MFC
networks are biologically meaningful models
of intelligent behavior and their study sheds
light on the neurophysiological foundation of
intelligence.

3. Theoretical Capabilities

For a given choice of network parameters, an
MEFC network implements a continuous
function. Without constraining the architec-
ture or size of the network, what kinds of
functions can be arbitrarily well approximated
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by the output of a neural network? This of
course depends heavily on the class of net-
work architectures being considered and the
type of nonlinearity implemented by a single
node.

In prior research, we have definitively an-
swered a number of these questions in a rig-
orous manner. Define a class of network ar-
chitectures to be complete if: given a continu-
ous function, f, with compact support and an

€ > 0, there is a network from that class
whose output approximates f uniformly to

within € over the support of f. For example,
there are many classical classes of functions
that are complete - polynomials, multinomi-
als, Fourier series and so on.

We have shown that the following classes of
networks are complete in this sense:

1. networks with two hidden, internal lay-
ers and any continuous sigmoidal nonlin-
earity [Cy88a;

2. networks with a single internal hidden
layer and any continuous radial basis
type function (see [Bu88,Ca87,
Mo88,Po87] for discussions of radial
basis functions - one can think of them as
generalizations of spherically symmetric
Gaussian densities in density estimation
problems) as a nonlinearity [Cy88a];

3. networks with a single internal hidden
layer and any continuous sigmoidal non-
linearity [Cy88b].

These results make absolutely no claims
about the number of nodes needed to perform
the approximation although in some cases,
gross and probably unrealistic upper bounds
could be obtained.

Of these three results, the last concerning
networks with only one internal, hidden layer
is certainly most surprising. It has generally
been felt that such networks could implement
decision functions for convex regions and
there have been examples of special noncon-
vex regions bein; discriminated as well
[Li87,Ni65,Wi87] but a general result has
been missing. We believe that the results of




[Cy88b] are definitive in their resolution of
the issue.

The proofs of 1. and 2. above are construc-
tive and basically reduce to showing that
networks in that class can implement so-
called approximations to the identity or
Parzen windows [Pa62,Du73] together with
sums of such functions. It is well known
that convolution with approximations to the
identity approaches the identity function
uniformly over a compact domain. What
remains is to show that the convolution
integrals can be uniformly approximated by
finite Riemann sums over the whole domain.
By contrast, the proof of 3. is
nonconstructive, using the Hahn-Banach and
Reisz Representation Theorems to show that
a certain linear subspace is dense in the space
of all continuous functions.

In summary, we feel that these results give
rigorous meaning to the assertion that in
principal any continuous function can be ap-
proximated by any of the three classes dis-
cussed above. Extensions to discontinuous,
integrable functions are outlined in [Cy88b])
as well.

Given that the classes of networks described
above share the same completeness properties
as many classical classes of functions
(splines, polynomials, Fourier series, expo-
nential families), what, if any, properties of
MFC networks make them distinct? As we
have mentioned before, in cases 1. and 2.
above, the networks are capable of imple-
menting Parzen window type estimators and
hence there is a certain localization property
that such approximations have. In a noisy
approximation problem, this might be inter-
pretable in terms of robustness. Secondly,
the strong biological motivation makes the
study of these types of approximating fami-
lies interesting from a purely intellectual point
of view - if indeed nature implements pattern
recognition and classification this way using
neurons, then it is ineresting to understand
how that is done.

4. Feasibility

The results summarized in the previous sub-
section indicate that network architectures and
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the nonlinearities that they implement do not
constrain the kinds of problems that can be
handled by MFC networks. However, in any
real engineering attempt to implement a net-
work solution, constraints must be imposed
on the number of nodes used, the amount of
data that can be observed and the complexity
of the algorithm used to find suitable network
parameters.

There have been numerous recent efforts
trying to deal with such issues for a variety
of different settings [ Ah88,Ba88,BI87, 3
Ke87,Va84). Valiant formalized a notion of |
feasibility with respect to learning a boolean
function and demonstrated that certain classes
of boolean functions were feasibly learnable
in that sense [Va84]. (It should be clarified
that in the context of our prior discussion,
learning is any technique for selecting model
parameters that let the parameterized system
duplicate or approximate the input/output be-
havior of the observed system.) Valiant
introduces a probabilistic setting for learning
that is reminiscent of classical hypothesis
testing.

Blumer et al. generalized Valiant's ideas to
more general notions of learning (for exam-
ple, learning rectangles or convex sets) and
related feasibility in learning to the concept of
Vapnik-Chervonenkis dimension in a non-
trivial manner [BI87]. Vapnik-Chervonenkis
dimension was an idea introduced in non-
parametric, distribution free pattern recogni-
tion some time ago [Va71] and its interpreta-
tion and utility in the context of learning is
therefore quite natural although not at all ob-
vious. Baum and Haussler have recently ap-
plied those results to neural networks with
hard limiting nonlinearities by estimating the
Vapnik-Chervonenkis dimension of a simple
class of neural networks [Ba88]. However,
the results of [Ba88] are disappointing from a
practical point of view since the results make
statements about the extent to which neural
networks can accurately generalize assuming
that some fraction of the empirical data pre-
sented to the network can be correctly
learned, without directly addressing the diffi-
cult question of what sets of data can be
learned by such (finite) networks. Recent
work by Judd and Rivest [Ju88,Ri88]
demonstrates that this is indeed a difficult
question by showing that the problem of de-




termining whether a given network architec-
ture can exactly implement a given empirical
data set is in general NP-complete.

All of the research discussed above deals
with Boolean (0,1) valued systems such as
Boolean expressions and characteristic func-
tions of sets. The situation with respect to
real-valued functions and real-valued net-
works is largely uncharted territory. There
has been some recent theoretical analysis of
so-called universal Donsker classes
[Du84,Du87] that generalize Vapnik-
Chervonenkis classes in the context of dis-
tribution free limit theorems but even then, it
appears that most interesting examples are
closely related to the idea of Vapnik-Chervo-
nenkis dimension anyway. There are some
intriguing relationships between Donsker
classes and metric entropy [Du87] that might
be interpretable in terms of signal bandwidth
- we discuss this shortly. Accordingly, most
of the work on real-valued networks has been
empirical (such as [La87,Mo88] and many
papers in [NN1,NN2] ).

The problem of approximating a real-valued
function by some parametric combination and
composition of simple functions is of course
the raison d'etre of classical approximation
theory. The traditional measure of how easy
or hard a continuous function is to approxi-
mate is given by the magnitude of the func-
tion's derivative. Generally speaking, func-
tions with small derivatives are easier to ap-
proximate because they change at a slower
rate. However, even functions with small
derivatives are very hard to approximate if the
dimension of the underlying space is moder-
ately large. A precise statement of this fact
can be stated as follows:

Suppose that [f(x)] < 1,

<1

A
axi

for x €I (I, being the unit n-cube in R").
Then if we seek an approximation g(x) so

that |f-g] <eonl_, we must sample f at more
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-n
thance points for some constant c. Con-

n
versely, if chosen properly, O(e ) points are
sufficient.

A simple application of the mean value theo-
rem shows that sampling f at that many
points (properly distributed) is sufficient
while constructing a simple class of functions
f that oscillate unpredictably but within the
constraints shows that that sampling is
necessary. (The details are simple and the
reader can easily fill them in.) For example, if
we want to approximate such a function so
that the approximation has two significant

digits, then € = 0.01 and for n=6 we need

about 102 samples of the function. This
observation is completely independent of the
technique that we use for approximating, be it
polynomials, Fourier series or neural net-
works. Moreover, this could also be inter-
preted in terms of the classical sampling the-
ory of multidimensional signal processing -
signal bandwidth and the sampling rate are
closely related in a like manner.

This example illustrates that smoothness of a
function is not sufficient for making the
problem of approximating the function feasi-
ble - the problem lies with the volume of the
sample space as a function of linear dimen-
sion which grows exponentially in the num-
ber of variables. Accordingly, multi-
dimensional approximation theory has
largely restricted itself to problems involving
very small dimensioned coordinate spaces.
Similarly, empirical data analysis has had to
be restricted to small dimensions. Two no-
table exceptions are the techniques of
projection pursuit [Hu85]and CART
(classification and regression trees) { Br84].

One of the guiding principles of both neural
network theory and projection pursuit meth-
ods is that some multidimensional functions
have parsimonious representations in terms
of linear combinations and functions of a
single variable. Linear combinations and uni-
variate functions are considered relatively
easy to estimate and compute. That attitude is
encouraged by the well-known result of




e

Kolmogorov [Ko57,L076] that goes as fol-
lows:

Theorem [Kolmogorov] There exist
m(2m+1) continuous increasing univariate

functions h,, with the property that given any

continuous function fon I, there is a contin-
uous univariate function g so that

f(Xg o0y X =
2m+1 m

2, B D hpfxp)
=1 p=1

This representation involves summations,
fixed univariate functions and only one uni-
variate function that is not predetermined,
namely g(x). While superficially this sounds
encouraging, it packs all of the complexity of
the multidimensional function f into the uni-
variate function g. See [Di84] for some
discussion of the properties of functions
representable in such terms involving
polynomials only.

We have tried to investigate the Kolmogorov
function, g, defined above for a complex
problem in spectral estimation. Our numeri-
cal experiments sought to get least squares
estimates of g with increasing accuracy. The
results clearly show that the complexity of g
is enormous - it a highly oscillatory function
that is poorly approximated by Fourier series
or other orthogonal basis functions. This
leads us to conjecture the existence of a rela-
tionship between the complexity of a general
multidimensional function, f, and the com-
{)(lexity of its univariate version, g, via the

olmogorov representation. The complexity
of a function can be measured for instance in
terms of its bandwidth (ie spectrum). We
believe that there arc severe limitations on the
complexity of multidimensional functions that
can be implemented as simple combinations
and compositions of univariate functions
such as sigmoidals. We believe that some
research ought to be devoted to such ques-
tions.
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At the same time as we outline this dismal
situation, there have been a number of ex-
amples where MFC networks have done an
admirable job of modeling and approximating
complex time series via nonlinear prediction
[La87,M088]. Those examples require a
closer look to see exactly what kind of mech-
anism is used for generating the time series.
The example in [La87] shows that a simple
network can learn and then replicate quite
well the behavior of the quadratic map of the
unit interval into itself given by f(x,b) =
bx(1-x). The time series is generated by iter-
ating f. This family of maps, as b varies, ex-
hibits period doubling and chaos. Hence, for
different values of b, a plot of the time series
can look impressively complex. However,
the underlying function itself that generates
this complex behavior is by any measure very
simple to approximate. It is a two dimen-
sional quadratic function. The general theory
outlined by Feigenbaum [Fe78] shows that
the behavior exhibited by bx(1-x) is generic
and will be exhibited by any function that is
unimodal with a quadratic maximum. Hence,
any reasonable approximation would likely
have similar behavior.

The time series modeled in [Mo88] is gener-
ated by the Mackey-Glass equation which is a
more complex example of chaotic behavior.
Nonetheless, the model used four prior sam-
ples of the series to predict, nonlinearly, a
future sample. The modeling in [Mo88] ba-
sically involves estimating a real-valued
function of four real variables and, by our
previous observations, this comes close to
what must be regarded as a feasible problem
to solve in general. To understand this
particular example better, we need to examine
solutions to the Mackey-Glass equation and
see if they possess any special properties, in
terms of either predictability or smoothness.

5. Determining Feasibility

The discussion of the previous paragraph
surrounded the question of identifying gen-
eral analytic criteria for determining the feasi-
bility of using MFC networks to implement
approximate solutions to problems in
continuous-valued applications. These appli-
cations include nonlinear time series predic-




tion and the implementation of difficult to
compute functions.

The practical problem remains of deciding
whether a given empirical data set is of the
type that could be feasibly implemented by an
MFC network. It may not be possible to de-
termine whether the underlying application
satisfies the requisite criteria, whatever they
may be. This would be the case in, for
example, continuous recognition problems
such as signature classification from sonar,
IR or radar imaging data. The underlying an-
alytical model that determines the classifica-
tion may be too complex or difficult to ex-
press explicitly to decide whether the
application can be well served by MFC net-
works.

In fact, classification using many continuous
input variables is a general application area
that has been successfully handled by MFC
networks ([Se88] for example) in some
cases. We introduce the informal notion of
granularity as a parameter of an approxima-
tion problem in the following way: granular-
ity refers to the number of distinct function
values that are of interest in an MFC applica-
tion - a finely grained problem is one that in-
volves many function values over a large part
of the input variable space while a coarse ap-
plication is a problem with few function val-
ues of interest and the regions where the
function assumes all except one of those val-
ues are sparsely distributed in the input
space.

Thus in a classification problem involving the
recognition of say 10 signatures from 20 real-
valued signal statistics would be characterized
as a coarse problem since the classification
would be nontrivial typically in only 10 iso-
lated regions of the 20 dimensioned input
space. Thus, relatively speaking, the volume
of the input space that involves an interesting
function value is relatively small even though
there are many real-valued input variables.
Moreover, the precision sought in such a
classification problem is relatively low com-
pared with an application such as time series
prediction. In a qualitative way, let a coarse
problem be one that involves some combina-
tion of these features. What is an appropriate
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quantitative measure of granularity as dis-
cussed above?

In questions such as this, we believe that
guidance must be sought from very similar
kinds of problems studied by statisticians in
the general methodology of CART
(classification and regression trees) [ Br84].
CART is a statistically based, data driven
method for partitioning an empirical data set
typically using a succession of linear dis-
criminant functions. Loosely speaking, the
hierarchy of linear discriminations determines
a binary decision tree which is something
very similar in fact to a multilayered neural
network with hardlimiting nonlinearities. The
technique of projection pursuit {Hu85] in-
volves computing good (with respect to some
criterion) projections of multidimensional
data onto a vector direction and performing
general nonlinear regression on the project=d
data. That basic step of projection and re-
gression is iterated on the residual data. The
resulting functional form of the approxima-
tion resembles the Kolmogorov representa-
tion very closely and this is discussed in
more detail in [Di84].

We pose the following two questions as a
challenge for the statistical audience, given
the various observations that we have made
above.

Can statistical techniques such as CART
and projection pursuit be used as prepro-
cessing steps for determining the feasibil-
ity of applying MFC networks to a specific
empirical data set?

How does the performance of MFC net-
works compare with CART and projec-
tion pursuit on sparse continuous classifi-
cation problems?

In summary, we believe there are valuable
contributions to be made by using known
statistical techniques to assess the feasibility
of using MFC neural networks in a variety of
problems.
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Muhammad K. Habib
Center for Computational Statistics and Probability
George Mason University
Fairfaz, VA 22030

Abstract

Stochastic models of some aspects of the electrical activity in the nervous system at the cellular and
network levels are investigated. In particular, models of the subthreshold activity of the somal
transmembrane potential of neurons are considered along with methods of identification of
physiological parameters of the discussed models. A simulation study is conducted to evaluate the

performance and efficiency of the estimates of the parameters.

1. Introduciion. Studies of mechanisms underlying neural coding and the representation of

information in the nervous system are of great interest to neuroscientists and modelers of neural
networks. Stochastic models are essential tools in describing the behavior of neurons under conditions
where large numbers of inputs and internal events occur at the cellular and network levels. For
instance, there is an extensive literature concerning experimental and theoretical studies of neuronal
integration of synaptic inputs as reflected by the difference in potential across the somal membrane of
nerve cells (see e.g. Johannesma, 1968; Tuckwell, 1979; Ricciardi and Sacerdote, 1979; Baranyi and
Feher, 1981; Kallianpur, 1983; Habib, 1985; Ferster, 1987; Habib and Thavaneswaran, 1988.) The
stochastic models developed in some of these studies relate the subthreshold behavior of somal
membrane potential near the spike generation (or initial) region to physiologically meaningful
parameters. These include the effective membrane time constant, amplitudes and rate ot occurrences of
membrane perturbations due to the arrival of excitatory and inhibitory post-synaptic potentials
(EPSPs and IPSPs, respectively), and measures of variability of synaptic inputs. Estimation of these
parameters using experimentally generated intracellular recordings of the neuronal membrane potential

should shed light on some aspects of neuronal integration of synapic input.

In Section 2, we present several Ito-type stochastic differential equation models that describe
the activity of different types of neurons or activity of certain type of neurons under different
experimental conditions. In Section 3, we discuss statistical methods of parameter estimation such as
maximum likelihood and the theory of optimal estimating functions. In Section 4, we report on a

simulation study to evaluate the performance of the parameter estimators.

LThis research was supported by research contract with the Office of Naval Research, Contract
Number N00014-83-K-0387.
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2. Stochastic Neuronal Models. Assume that the state of the neuron is characterized by the
difference in potential across its membrane near a spatially restricted area of the soma called the
trigger zone (or spike initiation region). The membrane potential is modeled by a stochastic process,
V(t), defined on a probability space (22, ¥, P). It is subject to instantaneous changes due to the
occurrence of a} EPSPs which are assumed to occur according to mutually independent Poisson
processes P()$; t) with rates /\ﬁ (k=1,2,...,n,), each accompanied by an instantaneous displacement of
V(t) by a constant amount aﬁ > 0 (k=1,2,...,n,), and b) IPSP which occur according to independent
Poisson processes P(z\i,; t) with effective displacement a}( >0(k=1,2,.,n,). Between PSPs, V(t)
decays exponentially to a resting potential with time constant 7. As a first approximation the PSPs
are assumed to sum linearly at the trigger zone, and when V(t) reaches the neuron’s threshold, an
action potential takes place. Following the action potential, V(t) is reset to a resting potential. Based
on this simplified model neuron and considering n, excitatory synapses and n, inhibitory ones, the

membrane potential V(t), is modeled as a solution of the stochastic differential equation

n, n,
(2.1) dV(t) = pV(t)dt + 3 af dP(A%;t) =Y ap dP(A 3t),
k k k
k=1 k=1
~
where V(0) = V, and p = 7', Under certain conditions the solution of (2.1) is a homogencous

Markov process with discontinuous sample paths. This model is known as Stein’s model (Stein, 1965)
and is a special case of the well known Poisson driven Markov process models. This model has been

treated in the literature by many authors, among them Johannesma (1968) and Tuckwell (1979).

Diffusion models in which the discontinuities of V(t) are smoothed out have been sought as
approximations to the discontinuous model (2.1) (sce e.g. Ricciardi, 1982; Kallianpur, 1983; Lansky
and Lanska, 1987). These types of approximations are justified on the grounds that for many types of
neurons in the central nervous system, synapses are densely packed along the dentritic tree. If the
jumps of V(t) are small and the rates of occurrence of the post-synaptic potentials are very large, then
the approximation of the Poisson driven Markov model by a diffusion model is appropriate and is
accomplished by allowing the amplitud~s aﬁ ) a}( to tend to zero and the frequencies AL | AL to
become large in a certain manner. Under some regularity conditions it was shown that model (2.1) can

be approximated by the diffusion model
(2.2) dV(t) = (=pV(t) + p) dt + o dW(1),0 < t < T,

V(0) = V,, where W is the standard Wiener process (or Brownian motion).

As has been mentioned, model (2.2) describes the subthreshold activity of the somal membrane
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potential of neurons which receive extensive (or rapid) synaptic input with relatively small potential
displacements. This model may be suited for neurons which are spontaneously active. However, in
many situations especially for stimulus driven neurons this last assumption on synaptic input might be
too stringent because the nerve cell might receive a limited number of effective synaptic inputs that
induce relatively large potential displacements, in addition to the extensive synaptic diffusion inputs
discuss ed above. For example, in a study of the organization of inputs from the lateral geniculate
nucleus to cells in the striate cortex of the cat, Tanaka {1983) found that about 10 genicular neurons
arc functionally connected to one simple-cell during the presentation of effective stimuli. A large
(converence) number (more than 30) was obtained from studies of geniculate projection to complex
cells. In this case a mixed model of diffusion and point process inputs may be more suitable for
describing the activity of such cortical neurons. To that end, assume that in addition to the extensive
synaptic input leading to the diffusion model (2.2), there are n, EPSPs arriving according to
independent Poisson processes N(/\ﬁ, t) with random intensities ,\ﬁ, and EPSP displacement
amplitudes af(, k=1,2,...,n,. In addition, IPSPs are arriving according to the independent processes
N(/\L, t), with the corresponding parameters /\{( and a{(, k=1,2,....n,.  This setup leads to the
following extended mixed model to describe the membrane potential of a stimulus driven neuron:

n,

n . .
(2.3) dV(t) = (—pV(L) + p) dt + o dW(L) + i aidN(/\ﬁ, -3 a'kdx(,\'k. t).
k=1 1

Model (2.3) is remarkably similar to the continuous neuronal model proposed by Hopfield
(1984). The problem of parameter estimation of the mixed model has not been sufficiently addressed
in the literature. In the next section we treat the problem of parameter estimation of the diffusion

model (2.2) and the mixed model (2.3).

3. Parameler Estimation of a Diffusion Neuronal Model. Lansky (1983, 1984) considered the
problem of parameter estimation for diffusion neuronal models observed over a fixed interval [0,1] and
discussed the asymptotic properties of the estimators as T—=ac. Given n independent trajectories
{(Vet), 0 <t < T} } k=1,2,...,n, where, 7|, 7,,...,7n are independent random variables (stopping

times) with P(1, <o) = 1,k=1,2,...,n.

Habib (1985) derived maximum likelihood estimators of the parameters p and p and
established their large sample properties such as strong consistency and asymptotic normality assuming
o is known. Now recall the diffusion neuronal model (2.2). From Sorensen (1983), the log-tikelihood

function is given by
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Tk T

n k
3.1 Lo(p, g) =% —pV. (t) + p) dV, (t) — 1 —pV(t) + p)? dt}).
(31 Lnle, ) 1{/ (P04 W V0 2/fk_1( V(1) + W) dt)

The maximum likelihood estimators (MLE) f)n and ﬁn of p and u respectively are simply thos: values

given by
n 'k n [Tk n [Tk
oo 2 [ vwavo-E [ 5 v ag s dv, (1)
A k=17 Ty _1 k=17 Tk k=1Y Tp_1
(32) fn = n rk -
[2 Vi () dt}’ — DpEp
k=1/ Ty
T T T
n k n k X n
(3 V(1) dt[ 3 V) (t) 4V, () —En[ ¥ av, (1]
A k=17 Ty | k=17 Tk k=17 Ty
(33) HBn = N rk
[> Vi (H) dt]* — DpEp
k=17 Ty
where
.
n n k ,
Dp = (3 (rp~71_)) and Ep=[}) Vi (t) dt].
k=1 k=1 Tk_l

Using the fact that the membrane potential V]\(t) is observed continuously over raudom intervals, the

diffusion coefficient s may be estimated from an observed trajectory Vk (k=1,2....,n) by the formula

Mg
Y . ., o—In , . M2
(3.4) 3'(k)::(ﬂ::%;ijﬁ Jﬂuxﬁg;ﬁvk(Tk_l4jdk2 )= Vilr _+G-Dd 2T TP
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This result may be proved using the corresponding result of Levy for Brownian motion by transforming
V} via time substitutions into Brownian motion (or Wiener process). A natural estimate of o? which

employs all the observed trajectories is given by

The consistency and asymptotic normality ¢f p, and fi, (as n—»oo) have been established in Habib

(1985).

4. Simulation Studies. In this section we briefly discuss the results of a simulation study to
evaluate the performance and efficiency of estimates of the parameters p and p of model (2.2). This
study provides general guidelines for the choice of the number of observed trajectories and the length of

the observation period of every trajectory.

For simplicity, we consider the diffusion model (2.2). Assume for the moment, that the period
of observation is fixed, say [0,T]. In this case, the estimators znT and ﬁnT are defined in terms of
stochastic and ordinary integrals (c.f. (3.2) and (3.3)). But, in practice one has to approximate these

integrals with appropriate finite sums which depend on the digitization scheme or the partition mesh

{tostyr -ty } € (0.T].

In order to evaluate the performance of the estimates ﬁnT and ftnT, we simulated the

solution of model (2.2) using the difference equation
(4.1) V(tk_H) = (—pV(tk) + p)h+ U(W(tk_H)— Wi(t, )

where h = t/K, = kh, k=1,2,.. ;K. It is well known that the solution of {2.8) converges to V(t). For

instance, if we set Vi.(t) = V(t, ) for teft, ), then
K k k

’tk+1

E(OSSUSST | V(1) = Vi (1) |2) - 0.

as K—+o0 (see Gihman and Skorokhod, 1979). This and other kinds of discretization, especially Runga-

Kutta schemes, have been extensively studied (see e.g. Magshoodi and Harris, 1987).

It is clear from Table 4.1 that for processes which are observed over a period [0.T) with T=10
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ms, the estimates of all parameters except for o are very close to the true values of the parameters and

they improve as the number of observed trajectories, n, increases. From Table 4.2, there is no

improvement in the estimators as the number of observed trajectories n increases (in fact, they
deteriorate). This apparently happens because for Table 4.2 the period of observation [0,T] was longer,
T = 15 ms. Therefore, one may conclude that for action potentials with long durations, one does not
gain much by recording a large number of spikes, but for action potentials with relatively short
durations, one can expect that the parameter estimators will improve as the number of observed action

potentials increases.

5. Conclusions. The stochastic models considered in Section 2, take into account only the

temporal aspects of synaptic input. It is well established, though, that among the important factors
influencing synaptic integration are the geometry of the dendrites of post-synaptic neurons and the
spatial organization of synaptic input. Habib and Thavaneswaran (1988) proposed a stochastic partial
differential equation which is based on a cable model of a system of branched dendrites projected onto

a one dimensional equivalent dendrite as proposed by Rall (1978). The theory of optimal estimating

functions was applied in this case to obtain estimates of the model’s parameters.

Table 4.1 Parameter estimates using a simulated diffusion process

observed n-times over a fixed period [0,T] and sampled every o units:

a. T=10m.s., § = 0.10.
Parameters True Value Estimated Estimated Estimated
Value Value Value
n=1 n=10 n=50
p = r-l 0.33333 0.30336 0.33000 0.33427
n 5.00000 4.63803 4.84648 4.88702
o 0.31623 0.67566 0.67364 0.67583
Table 4.2 Parameter estimates using a simulated diffusion process
observed n-times over a fixed period [0,T] and sampled every § units:
b. T=20m.s., 6§ = 0.10.
Parameters True Value Estimated Estimated Estimated
Value Value Value
n=1 n=10 n=50
p - r'l 0.33333 0.30369 0.32705 0.32399
m 5.00000 4.86121 4.77822 4.71001
o 0.31623 0.33012 0.51796 0.33537
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Before concluding, it should be noted that the parameters p and g in the mixed Ito-Markov

model (2.3) may be estimated using the theory of optimal estimating functions. Indeed, let

ny Ny, .
(5.1) N(t) = 2—:1 ap N (AL, t) —kglal‘( N (A s t)
and
n, g . .
(5.2) E[N(t)] = 1(<§1 QE /\ﬁ —kglai /\L )t = At.

Notice that M(t) = W(t) + N(t) — At is a martingale with M(0) = 0. Substituting in (2.3), we obtain

the equivalent model:
(5.3) dV(t) = (—pV(t) + u't) dt + dM(t),

where ' = p+). The method of optimal cstimating functions can be used in this case and it can be
shown that the optimal estimates of psand p are identical to the maximum likelihood estimates 3 and

7 in (3.2) and (3.3).

One may then estimate the parameters p and p of model (2.2) from data recorded while the
neuron is spontaneously active. In the meantime, the parameters p and ;1’ of model (5.3) may be
estimated form data recorded from the same neuron during periods of stimulus-driven activity. In this
case, it is possible to estimate the parameter A:p'—p which reflects the impact of the synaptic
activity due to the presence of the stimulus. Also a changc in the value of the parameter p may reflect

changes in the membrane properties due to the stimulus.
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STATISTICAL LEARNING NETWORKS: A UNIFYING VIEW
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Abstract

A variely of network models for empirical inference have
been introduced in rudimentary form as models for neurological
computation. Motivated in part by these brain models and to a
greater extent motivated by the need for general purpose
capabilities for empirical estimation and classification,
learning network models have been developed and successfully
applied to complex engineering problems for at least 25 years.
In the statistics community, there is considerable interest in
similar models for the inference of high-dimensional
relationships. In these methods, functions of many variables
are estimated by composing functions of more tractable lower-
dimensional forms. In this presentation, we describe the
commonality as well as the diversity of the network models
introduced in these different settings and point toward some
new developments.

1. Introduction

In the context of empirical inference of functions of many
variables, a network is a function represented by the
composition of many basic functions. The basic functions
(which are also called elements, units, building blocks,
network nodes, or sometimes artificial neurons) are constrained
in form: typically nonlinear functions of a few variables or
linear functions of many variables. By definition, a learning
network estimates its function from representative
observations of the relevant variables.

Several composition schemes for network functions and
corresponding estimation algorithms are reviewed in this
paper. Consideration is given to certain networks popular in
the neurocomputing field such as perceptrons, madelines, and
backpropagation networks. (For a collection of some of the key
papers in this field see the volume edited by Anderson and
Rosenfeld 1988.) Unfortunately many learning networks are
inflexible in the form of the basic functions, inflexible in the
connectivity of the network, and lack global optimization of
the network function. More consideration is given here to
globally optimized networks, networks with adaptively
synthesized structure, and networks with nonparametrically
estimated units. Particular attention is given to polynomial
networks (R.L. Barron et al. 1964, 1975, 1984, Ivakhnenko
1971), projection pursuit (Friedman et al. 1974, 1981, Huber
1985) and transformations of additive models (Stone 1985,
Tibshirani 1988). New composition schemes are suggested
which combine the positive benefits of the above methods.

Although there are interesting analogies of statistically
estimated network functions with the activity of networks of
living neurons, we shall not constrain our network functions to
be biologically viable models. Instead the focus is on the
development of empirical modeling capabilities for network
function so as to represent the input/output behavior of a wide
range of complex systems for scicntific and engineering
applications.

Mathematical limitations of high-dimensional
estimation are discussed. Bounds from nonparametric
statistical theory show that reasonably accurate estimation
uniform for all smooth functions (e.g. functions with bounded
first partial derivatives) is not possible in high dimensions
with practical sample sizes. Network strategies avoid some
of the pitfalls of high-dimensionality by searching for
structures parameterized by lower dimensional forms. The
advantage is that for high-dimensional problems the

Twork supported in part by an Office of Naval Research grant N00014-86-K-
0670 and by a National Science Foundation Postdactoral Research Fellowship.
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variance (estimation error) associated with such networks can
be much smaller than associated with more traditional
approaches. As for the bias (approximation error), the
evidence is that for many practically occurring functions
accurate network approximations exist, in spite of the
theoretical fact that high-dimensional functions can possess
sufficiently irregular structure so as to preclude accurate
estimation.

Some dynamic network models (such as the Hopfield
network 1981) are differential equations (or difference
equations) resulting from cycles present in the interconnected
network. In this paper we restrict attention to static network
models which have no loops in the network. Thus the network
is a tree of interconnected functions which implements a single
input/output function, which may be adjusted by the empirical
estimation process, but otherwise is static.

2. Block Diagrams

We present a hypothetical network to get oriented to some
terminology and notation. A function which is defined as a
composition, such as

fixy, Xg. X3, X,) = 84(8,(83(x1, X5), 8%y, X3, X)),
85(84(xy. X3, X), 85(x,))),

may also be written in terms of intermediate variables
f=85(zp 2y
2y = (23, 24), 2, = 8y(2y, 25)
23=83 (X, X,), 2= 8,(xy, X3, X)), Z5=ge(x,),

or it may be drawn as a network diagram (Fig.1):

) Jp——
1 €,
X, —
X‘ g‘
X.
3 g, € l(x‘. X0 Xy x‘)
*s €,
% &s

Fig.1. Example Netwourd

The layers of a network are the sets of functions which occupy
the same depth in the tree.

For a general notation for network functions, in which the
indices on a basic function specify the position of the function
in the tree relative to the root node, sce Lorentz (1966). He
called network functions superposition schemes. Lorentz made
fundamental contributions to the thecory of representing
functions by compositions which are discussed later in this
paper.

Representations for network functions are not unique. For
instance, if some of the basic functions are absorbed into the
functions to which they are input, then fewer elements are
obtained, but the new clements have possibly greater input
dimension.

Motivated by the application to modeling human vision,
Rosenblatt (1962, ch. 4) called networks with arbitrary




elemental functions perceptrons (although subsequently the
term has been used to refer to just one type of network with
thresholded linear elements that Rosenblatt extensively
studied). Our definition differs slightly from Rosenblatt's in
that he allowed transformations to occur on the branches
(interconnections) of the network. Such networks are
represented in our form either by defining additional single
input nodes or by absorbing each such transformation into the
node to which the branch is directed.

3. The Building Blocks

For learning networks it is important to choose elements
of the network with sufficiently general form that the
resulting networks can approximate nearly any function of
interest. It is also important to choose these elements with
sufficiently small dimension or complexity that they can be
accurately estimated. Different approaches to resolving the
tension between these two seemingly conflicting objectives
result in a variety of different learning network schemes.

Let the function g(z) denote an element of the network,
where z is the vector of intermediate variables (outputs from
preceding elements or sometimes original input variables)
which are input to the given node. The most common forms of
elements roughly can be categorized as parametric or
nonparametric.

Parametric elements: These are basic functions g(z, 6) which
depend on a vector of unknown parameters. The parametric
elements which have been proposed for learning networks
usually take one of the following forms:

80z, 0 = h (E 6z + 6 )

8(z,0) = X ox (2) 2)
or, more generally,
2(z, 8) = WX 6r(z)) (3)

where @, k=1,...,m, and k are fixed functions. The two most
common choices for the @, are linear terms (coordinate
functions), so that the sum simply implements a lincar
combination of the inputs as in (1), or polynomial terms of
moderate degree. The nonlinear function h is typically chosen
to be a nondecreasing function bounded by one (such as a unit
step function) -- this is frequently incorporated in networks
intended for binary classification. The parameters of each
element are estimated from observed data, typically by a
least squares or likelihood based criterion. The specific
method used to estimate the parameters depends on the
probabilistic structure of the data, the network synthesis
strategy, and the intended use of the network (see section 4
below).

Nonparametric elements: Some of the element functions g(z)
may be regarded as unknown and constrained only in terms of
basic smoothness properties (e.g. bounded derivative), or in
some cases g is modeled as a stochastic process indexed by z (a
Bayes formulation). Such functions are estimated by a
smoothing technique such as local linear fits, smoothing
splines, variable kernel estimation, truncated trigonometric
series, variable degree polynomials, or stochastic process
estimation. Typically parameters of the smoothing technique
are sclected by a criterion such as cross-validation, predicted
squared error, or penalized likelihood. With nonparametric
clements it is important that the dimension of the z variables
be kept to a minimum. (Otherwise the statistical theory
indicates that it would be difficult to estimate these clement
functions.)
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Mixed parametric/nonparametric: In this case both types of
elements appear in the network. A particularly interesting
approach is to combine nonparametric elements, each of which
depends only on one variable, with elements which implement
linear combinations of many variables. It will be seen that
networks of this mixed structure have the potential to
approximate any function.

We use the notation f(z, 6) to reter to the compiete
network function where x is the vector of all original input
variables and @is the vector of all parameters which appear
in the network.

4. The Structure of the Data and Objective of Network
Estimation

In practice, networks are estimated from a training
sample of observations of relevant variables. The sample is
tpically a sequence of input/output pairs ( X7, Y1), ..., ( Xa, Yn)
where each X is a d-dimensional vector. We focus on the case
in which the observations are independent, each with the
same probability distribution Pyv. (Certain problems
involving data with stationary serial dependencies can also
be treated, in which case the relevant distribution is the
conditional distribution given the past.) This probability
distribution is assumed to depend on an unknown function f(x):
it is this function which neural networks seek to approximate.
The assumed nature of this function depends on the objective of
the problem (e.g. regression, prediction, classification, density
estimation) and the criterion by which performance is
measured.

Perhaps the most common use of learning networks is to
scek a function f(x) to minimize the mean squared error
E(Y - f(l())z: that is, the function we wish to estimate is the
conditional mean f(x) = E [YIX =x]. For problems of curve
fitting, regression, or prediction this conditional mean function
has traditionally been the principle object of interest for
learning networks. (For certain time-series prediction
problems the desired function takes on the speufic form
fx) = E{Y 1 Ye1 = x1,..., Ye.qa = xqb). In particular, this
framework (associated with a squared ecrror measure of loss) is
appropriate when a function f(x) is measured subject to (mean
zero) Gaussian error at randomly distributed design points.

For classification problems, an optimal discriminant
function is one for which the overall probability of error is
minimized. Most often, learning networks have been utilized
to seek an indirect solution to the classification problem by
using the mean squared error as the criterion. For two-class
classification with Y € {0,1] the conditional mean function
reduces to the optimal discriminant () =P [Y=11X =]
Nevertheless, it may be more appropriate to seek to estimate
the logistic regression function f(x) = log(P [Y = 11xJ/(1 -
P[Y = 11x))) using likelihood-based criteria. In principle,
probability density estimation can also be handled using
learning networks and a likelihood criterion, in which case |
is taken to be the logarithm of the joint density function of the
random vector.

The intended use of estimated network functions? may
dictate probability models and performance objectives other
than those indicated above. For instance the object may be to
search for the extreme points of a function f by using the

extreme points of? . For problems in vehicle guidance, the

function f might estimate parameters of an optimum (two-
point boundary-value) guidance law as a function of current
and desired final vchicle states (in situations where the
optimum f can only be obtained by extensive off-line
iteration), in which case the ultimate performance objective is
to minimize the final miss distance, rather than to minimize
the mean squared crror of the parameter estimates.
Nevertheless, learning network methodologies have proven
successful in some of these contexts (see R. L. Barron and Abbott
1988).




Most network algorithms have been designed for
regression or classification with minimum mean squared error
as the performance objective, and our attention will be focused
primarily on this case.

5. Criteria for Network Estimation and Selection

Here we discuss model selection criteria needed for the
estimaiion of network functions. Without the use of an
appropriately penalized performance criterion, an overly
complex network may be estimated which accurately fits the
training data but will not prove to be accurate on new data.

Predicted squared error: If a network structure f(x, 8) is fixed
and if the total number of parameters k is small compared to
the sample size n, then the minimum mean squared error

mingE Y - f(X, )7 is approximately achieved by seeking

A

parameter estimates 8 that produce the minimum average
squared error on the training set, TSE = 131 (Y, - f (X, 6.
However, if k is large compared to n, then the model may
have small error on the given data, but it is likely to have
large error on future data from the same distribution. This
phenomenon is partly explained by noting that, under certain
conditions (namely that the network depends linearly on the
parameters and the true function f(x) happers to be a member
of the given k-dimensional family with error variance
ol=E (Y—f(X))z), the mean squared error of an estimated
network of fixed dimension k is not equal to the error variance
o2 but rather is equal to E (Y ~f (X, 0) = 6 2 + (kin)o % see
Mallows (1973), A.R. Barron (1984). This leads, in view of the
fact that under the same conditions E (TSE) = 0% - (k/n)o2, to
the predicted squared error PSE criterion as an unbiased
estimator of the future performance:

pss=TSE+3n'SaZ. )

This criterion is very similar to (and in some cases equivalent
to) the C, statistic proposed by Mallows (1973), the
generalized cross-validation criterion of Craven and Wahba
(1979), the final prediction error of Akaike (1970), and a
specialization of the AIC proposed by Akaike (1973). For a
recent treatment of these various criteria with emphasis on
generalized cross-validation see Eubanks (1988, ch. 2).
Calculations similar to those in Akaike (1973) show that PSE
continues to be an asymptotically unbiased estimator of the

A
mean squared error E(Y - f(X, 8))2 even if f(x, 8) is not a
linear function of 8, provided this function is sufficiently
smooth.

Unfortunately, if the network function is selected so as to
minimize PSE among a collection of functions of various
parameter dimensions, then there is no general guarantee that
the resulting minimum PSE will be an accurate estimate of the
mean squared error of the estimated function. Indeed, if the
true function f is a member of one of the finite-dimensional
network families, then the PSE criterion has a tendency to
ovarestimate the dimension (see Atkinson 1980, 1981). On the
other hand, the work by Shibata (1984, 1986) shows in related
contexts that if the true function f(x) is not exactly
representable by any of the finite dimensional models in a
sequence fi(x, 8,) for k=12,.... (but can nevertheless be

approximated by such models), then selection of k by a
criterion of the form given above is optimal in the sense that
A
the resulting expected squared error E (f(X) ~f(X))? is asymp-
A
wtically equivalent to min E (f(X) ~ f (X, Ol))z asn—» oo, ltis
not known if the results of Shibata carry over to the
estimation of network functions. Nevertheless, in our
experience with numerous practical cases (see Barron et al.
1984), nctworks selected by minimizing PSE have
approximately minimal average squared error on independent
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sets of test data (in the sense that if the growth of adaptively
synthesized networks is halted on an earlier layer or allowed
to extend to a larger number of layers, then a significant
increase in the average squared error on the test set does not
usually occur).

If the error variance o ? is not known, an estimate &2
can be used in its place in the PSE criterion; however, to avoid
overfit carc mus! be taken to avoid having 62 much less than
62; in particular, 52 should not be varied during the process of
selecting k (A. R. Barron 1984). We suggest that nearest
neighbor regression be used prior to network synthesis to
determine a rough estimate of the error variance with the
desired properties. To permit consistent estimation of f in the
case that it can be exactly represented by a finite dimensional
network (as well as in the case that it can be arbitrarily well
approximated by networks of sufficient dimensionality) other
criteria should be used which place a greater penalty on the
dimensionality of the model (e.g. ;':-Iag n instead of = ).
Criteria significantly different from PSE will not possess the
optimum rate property of Shibata in the context that he
considers; however, it is not known to what extent the
convergence rate is slowed.

Likelihood based criteria: Suppose the random vectors (XY,
have a conditional probability density function p(ylx, f)
which depends in a known way on the value of f (whereas the
true function f(x) may be unknown). Let f(x,8) be a given
netwo:k structure with a k-dimensional parameter 8. Assume
that 8 is estimated so as to maximize the likelikhood

p(Y' I X", f(.,0)) = H:_,p(Yil X;. f(X,8)). Define the Akaike
information criterion (Akaike 1973) by

AIC = - log p(Y* | X", f(-8)) + k (5)

and define the minimum description length criterion (Rissanen
1978, 1983) by

MDL = - log p(Y"1 X", f(-,6)) + Llog n. 6)

These criteria are used to choose between models of various
dimensions. Akaike derived the AIC as an asymptotic bias
correction for the estimation of expected entropy loss, in much
the same manner that PSE is an asymptotic bias correction for
the estimation of expected squared error. Rissanen derived the
MDL criterion as the length of a uniquely decodable code for
quantizations of the data Y" given the data X" (ignoring terms
which are asymptotically constant for k bounded). Unlike the
optional Shannon code, Rissanen's code does not require
knowledge of the function f. Instead, the MDL code uses
quantized maximum likelihood estimates of the parameters of
the function as a preamble of the code (using ylog n bits per
parameter). The criterion can also be derived as an
asymptotic approximation for the Bayesian test statistics
which minimize average probability of error in the selection
of the model (see Schwarz, 1978, Clarke and A.R. Barron,
1988).

The validity of the derivations of AIC, MDL, and Bayes
criteria require smoothness conditions. In particular the
sample Fisher information matrix I of second partial
derivatives with respect to 8 of - Llog p(Y"1 X", (-,6))

(evaluated at 6=8) should be positive definite. A more
precise form of the MDL or Bayes criterion uses ylog det(l)
instead of ;Iog n,

For regression with a Gaussian error distribution and
known error variance, the AIC reduces to the PSE criterion and
MDL reduces to a criterion equivalent to




TSE + (‘:-log no?l. (7

For classification problems with Y € (0,1}, likelihood based
criteria are defined by using the Bernoulli model
plylx f) = ()1 - f(x))'Y (in which case care must be
taken to use networks with 0 < f(x) <1). The equally general
logistic model p(y | xf = ¥ P)1 + ) may be prcferred for
classification problems, since it forces satisfaction of the
probability constraints 0 <p <1 without constraining the
function f. For logistic regression the minus log-likelihood

takes the form Tlog(1 + ef &« @) -3y (X, 6), which is
minimized (e.g. by Newton's method in the context of various
synthesis strategies) and then penalized by k or ylog n as

appropriate for the desired criterion.

Complexity regularization: In A.R. Barron (1985) the
minimum description length criterion is extended to
nonparametric contexts in which the description length need
not reduce to the form of (6). Consistency results are obtained

in A.R. Barron (1985, 1987) which show convergence (as n — )
of distributions estimated by the complexity regularization.
The specialization of the convergence results to the case of
estimation of network functions is given in the Appendix.

6. Main Strategies for Network Synthesis

There are two main strategies for the synthesis of
networks depending on whether the structure of the network is
fixed or allowed to evolve during the synthesis process.

Fixed networks: In this approach a fixed composition structure
(often relatively large) is preselected with the hope that the
desired function can be accurately approximated by networks
of the selected form. The problem of choosing parameters of
the network so as to optimize a performance criterion may be
regarded as a global search of a highly multimodal surface. In
general, global convergence is difficult to guarantee;
nevertheless, by choosing a network function which depends
smoothly on the parameters it is often feasible to estimate
sufficiently accurate network functions by certain global
search techniques (e.g. techniques which alternate global
random and local gradient search). Other methods for
estimating network functions attempt to localize the search
within each unit of the network by defining target values for
each elemental function. More specifics are given in section 7
below.

The advantage of the fixed network approach is that
certain structures are known to have the ability to
approximate any continuous function (see section 13).
However, for moderate sample sizes, these fixed structures
may have too large a parameter dimension for the least
squares or maximurn likelihood estimators to be accurate. In
this case, to prevent irregularity of the estimated function, it
is useful to constrain the parameters so that the resulting
network function is smooth or to penalize the performance
criterion by incorpuialing a term for the lack of smoothness
(e.g. the sums of squares of first partial derivatives of the
network functions at the observations). Of course the criteria
mentioned in section 5 above are not adequate when the
dimension of the network is fixed in advance.

Adaptive networks: In this approach, the attempt is to
estimate networks of the right size with a structure evolved
during the estimation process to provide a parsimonious model
for the particular desired function. Typically, the network is
estimated one layer at a time, with the elements on each
given layer selected to minimize the predicted squared error or
complexity regularization criterion. The basic idea is that
once the elements on a lower level are estimated, and the
corresponding intermediate outputs z are computed, then the
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parameters in a given element g(z, 8) may be estimated by
usual least squares or likelihood maximization techniques. It
is most common for the elements on each layer to be grecdily
trained to attempt to best estimate the desired final output,
even though the cutputs of these elements are combined on
succecding layers. On the other hanc, some methods
developed in statistics select the element functicns so as to
work best in linear combination with the previously selected
elements on a given layer.

Practical experience shows clear advantages of the
adaptively synthesized networks over some of the globally
optimized fixed network structures. (However, certain
theoretically appropriate fixed structures have yet to be tried
ir. practice; also, the smoothness penalty criteria have yet to
be utilized with the larger fixed networks.) In most instances
the adaptively synthesized networks are more parsimonious.
Parts of the network which are inappropriate or extraneous
for statistically modeling the given data are automatically
not included in the final network. The drawback of the
adaptive strategies is that they cannot be guaranteed to work.
It is possible to find counterexamples of data corresponding to
functions which are exactly modeled by a two-layer network,
but no non-trivial first layer clements are selected by a given
adaptive synthesis strategy.

Mixed adaptive/global strategies: After the best elements on
each layer are computed, a numeric search can be used to
update the estimates of parameters for ancestral nodes on
earlier layers. An iterative scheme that alternates between
estimation of the parameters of the given clement and the
estimation of the parameters of the ancestral nodes is
suggested by the projection pursuit algorithm and its
generalizations (see sections 10 and 12).

7. Some Early Network Developments

While linear models for regression and thresholded
linear models for classification (e.g. of the form (1), (2), or (3))
have been long used in statistical practice (with the
beginnings of the modern understanding due in large part to
R.A. Fisher (1922, 1934, 1936) who introduced measures of
statistical efficiency, explained the efficiency of maximum
likelihood estimation, and derived the linear discriminant
function for multivariate Gaussian classification), these same
linear models were reintroduced (unfortunately with
comparatively inefficient estimators) in the 1950's and 1960's
as a basic ingredient in learning network models. The new and
interesting twist was that more general classes of functions
were modeled by combining these simpler models into a
network. Here we mention some of the development which
occurred in this period.

The forerunners in the network modeling field were
McCulloch and Pitts (1943), who introduced the thresholded
linear function as a model for the behavior of a neuron and, in
that paper, analyzed the model not so much for its biological
viability, which was discussed only briefly, but rather (in the
language of theoretical computer science) as a basic
computational unit with the property that any predicate
with finite domain could be implemented by a network of such
units.

There was a surge of interest in methods for the inference
of networks (Hebb 1949, Ashby 1952, Farley and Clark 1954,
Minsky 1954, von Neumann 1956, Rosenblatt 1957, Lee and
Gilstrap 1960) culminating in some interesting and successful
mutltiple layer estimation methods in the early 1960’s due to
Rosenblatt (1962), Widrow et al. (1960, 1962, see also 1987),
and R.L. Barron ct al. (1964, see Moddes et al. 1965, Gilstrap
1971, Barron et al. 1984). Although some of the networks due
to Rosenblatt and Barron et al. used more general elemental
functions than the original thresholded linear function, they
did share the form (3) (transformed variables were combined
linearly using free parameters). These heuristic multi-layer




methods were not well understood theoretically and (with the
exception of Rosenblatt's book) they were not widely
disseminated at that time. We emphasize that contrary to
the popularly held current belief (initiated in the book by
Minsky and Papert 1969 and perpetuated by statements as in
Rumelhart et al. 1986, p.321), powerful rules were found for
the estimation of multiple layer networks.

The methods of Widrow et al. and Rosenblatt for binary
classification possessed many similarities. In particular, both
authors exclusively utilized recursive estimation strategies in
which the parameter estimates are updated with each new
observation by an error correction procedure analogous to the
Robbins-Monroe (1951) stochastic approximation (but without
the full statistical efficiency known to hold for recursive least
squares or recursive implementations of maximum likelihood).
Moreover, both approaches were amenable to clear
theoretical proofs of convergence properties in the case of
single element networks (these results are well-explained in
Nilsson (1965) and Duda and Hart (1973)). Widrow used a
stochastic gradient method which he called the least mean
squares (LMS) algorithm. Rosenblatt used a method (related
to relaxation procedures for solving linear inequalities, Agmon
1954), which he called the perceptron algorithm: it finds a
hyperplane which perfectly separates the two classes
whenever the classes are linearly separable. The non-
convergent behavior in the non-separable case was analyzed
by Efron (1964).

For multiple layer networks the method of Widrow et al.
(1960, 1962) was only explained in the case that first layer
elements are adjustable and the succeeding layers are
preselected. Widrow used iterations of his strategy to handle
also the more general estimation problem, but this approach
was not published until Widrow 1987, to which we refer the
reader for a description.

For two and three layer networks of thresholded linear
elements, Rosenblatt (1962, ch. 13) developed an algorithm
which he called back-propagating error correction
(unfortunately, this name recently has been reused for another
algorithm for network estimation, as mentioned below). The
objective of his method is recursively to estimate desired
outputs for every element as well as to estimate the
parameters. Naturally, given a desired output of an element
Rosenblatt updates the parameter estimates in the element by
his perceptron algorithm (here a parameter update occurs only
if the actual output differs from the desired output). On the
other hand, if the output of an element does match the desired
value, then depending on whether the resulting final output of
the network is in error, the desired intermediate variable is
adjusted to reduce this error (again as in the perceptron
algorithm but with the role of parameters and variables
reversed). (Randomization is used to avoid certain
degeneracies. In particular, with each step no update action is
taken with probability 0<p<1.) Rosenblatt advocated cycling
through the data and the elements of the network in such a
way that each combination (of datum and network element)
potentially would be considered infinitely often. He
presented a theorem (Rosenblatt, p. 294) to the effect that if
the data are scparable by the network (i.e. there exist
parameter values for which the network function correctly
classifies every point), then his estimation strategy will find
such an error-free solution in a finite number of steps (with
probability one).

The approach developed by R.L. Barron et al. (1964) and
further explained in Moddes et al. (1965}, Gilstrap {1971), and
Barron et al. (1984) solved the multilayer network estimation
problem by global search to minimize the sum of squared errors
Y- X, 8))%. Barron et al. introduced an algorithm calied
guided accelerated random search (GARS) which alternated
between global random search (using a spherical normal
distribution centered at the current best point) and local
gradient search (for which convergence was accelerated by a
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halving/doubling algorithm for the step size and by adjusting
a variable subset of the parameters at the different steps).
The particular elemental functions originally used by R.L.
Barron et al. were quadratic functions in two variables
8(2,0) = 8, + 8,z, + 8,2, + 0;2,2,. A spirally-connected
network with 24 input variables and seven layers was
constructed (see fig. 2). Using 25-50 observations of simulated
reentry vehicle positions during a given time frame
(t, t - At,.., t - 7At), networks were constructed to predict the
final position and impact time of the vehicle. The parameters
of the networks were constrained to values in the interval
between -1 and +1. The GARS search routine converged to
essentially the same extremum of performance for each of
many randomly selected initial parameter vectors, suggesting
that a non-unique global optimum was reached. Performance
on an independent test set of observations suggested that
despite the complexity of the network, and the small sample
size, the estimated function was not overfit to training data.
(However, overfit problems were later experienced with these
large fixed networks on some industrial process modeling
problems -- these experiences led in the early 1970s to the
adoption of adaptive synthesis strategies discussed below.)
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Fig. 2. Uniform Spiral 72-Element Network

The network of fig. 2, which consists of quadratic two-
input elements, represents a family of sixth-degree
polynomials. Since the nctwork contains a total of 288
parameters, this family is a relatively low-dimensional
manifold in the complete (593,775 dimensional!) family of
sixth-degree polynomials in 24 variables. Nevertheless, the
network had more than enough flexibility to yield accurate
approximations for the specific application to re-entry
vehicle trajectory predictions.

8. The Current Fashion

In recent work Rumelhart, Hinton, and Williams (in
Rumelhart ct al. 1986, ch. 8) propose that an implementation
of the gradient descent algorithm be used to attempt to




minimize the sum of squared error for multiple layer
feedforward networks. They use element functions of the form
(1) with h equal to a logistic function: this choice is viewed as
a smoothing of the step function to obtain a differentiable
function of the parameters. Since the network is a composition
of functions, the derivatives required for the gradient method
are determined by the chain rule of calculus (starting at the
final node and propagating back to the parameters in the first
layer). Although it is recognized that the gradient method
may be inappropriate in general for highly multi-modal
surfaces, Rumelhart et al. found that it worked adequately on
the simple examples that they considered. Hinton and
Sejnowski (in Rumelhart et al. 1986, ch. 7) propose that a
sequential random search algorithm (simulated annealing) be
used to estimate the parameters of a Hopfield style network;
they call their learning network a Boltzmann machine. These
papers (see Rumelhart et al. p. 3.:) give the impression that
multilayer search strategies for networks are novel to the
1980s. Clearly this is false in view of the methods we have
discussed. In our experience (beginning in the 1960s) a
combination of random and derivative-based search
strategies, as in the GARS algorithm, is an effective technique
for globally optimizing networks. In any event, much of the
recent work (as in Rumelhart et al) has ignored the
developments in the 1970s and 1980s of the adaptive network
strategies and the nonparametric statistical methodologies
for specific network structures.

9. Networks with Adaptively Synthesized Structure

With the propensity of large fixed networks to result in
overfit estimates, attention was turned in the 1970s to
networks for which the structure is adaptively determined
from the data. Such network strategies were introduced by
Ivakhnenko (1971) and their development in the U.S. is traced
in Barron et al. (1974, 1975, 1984, 1987).

The elements extensively utilized in these adaptively
synthesized networks are second- and third-order polynomial
functions in two variables. (One and three variable elements
are also used in recent implementations.) For the method to
work , the number of inputs of each element must be restricted
so as to avoid a combinatorial explosion in the number of
possibilities that the algorithm must check.

In brief, the basic strategy (using elements involving two
variables) is depicted in fig. 3. On the first layer, all possible
pairs of the inputs are considered and the best k; are
temporarily saved. On the succeeding layers, all possible
pairs of the intermediate variables z from the preceeding
layer(s) are considered and the best k, (k;, ctc.) are saved.
Finaily, when additional layers provide no more
improvement, the network synthesis stops. The final network
consists only of the ancestors of the final element.
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Fig. 3. An Adaptive Network Synthesis Strategy

In the original Ivakhnenko algorithm, the parameters
within each element were estimated so as to minimize on a
training st of observations the sum of squared errors of the fit
of the element to the final desired output. Cross-validation on
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a separate testing set was used to rank and select the best
elements on each layer and to select the number of layers.
(Ivakhnenko called this division of the data into sets with
different purposes in network estimation the group method of
data handling, GMDH.) The need to construct complete
quadratic polynomials for every pair of variables forced early
implementations of the algorithm to restrict the number k of
temporarily saved intermediate variables to be typically not
more than 16.

Later algorithms developed by A.R. Barron (1979-1982,
Polynomial Network Training Routine, PNETTR Il and IV,
Adaptronics, In¢.) incorporated a predicted squared error PSE
criterion (related to the criteria of Akaike and Mallows as
discussed above) at every phase of element selection in the
network. Morcover, a method was developed whereby
candidate pairs are prescreened before each layer (according
to their predicted error in linear combination) thereby
permitting more elements to be considered on each layer
(typically k is between 30 and 60). This also permitted more
complicated element calculations, i.e. third-degree
polynomials with subset selection by the PSE criterion. Also
the saved elements from all preceeding layers are candidate
inputs to a given layer. Morcover, some one- and three-input
elements are considered on each layer. The PNETTR
algorithm was extensively applied to problems in
nondestructive evaluation of materials, modeling of material
characteristics, flight guidance and control, target recognition,
intrusion detection systems, and scene classification; see
Barron et al. (1984) and the references cited there. For an
application of an earlier version of the algorithm to weather
forecasting see A.R. Barron et al. (1977).

The more recently developed algorithm by J.F. Elder IV
(1985-present, Algorithm for Synthesis of Polynomial
Networks, ASPN, Barron Associates, Inc.) permits a choice of
a minimum complexity or predicted squared error criterion.
This algorithm has more user flexibility in the choice of one-,
two-, or three-input elements and in the form of the
polynomial elements (e.g. the degree may be adjusted within
certain limits). Moreover, at each layer a new eclement is
considered which is a linear combination of all elements on
the preceeding layer.

Currently, a major applications thrust is use of
adaptively-synthesized polynomial networks to initialize
and/or re-initialize (in real time) two-point boundary-value
guidance solutions for flight vehicles (R.L. Barron and Abbott
1988). Polynomial networks are trained off-line on a library of
simulated optimum trajectories and interrogated on-line with
information about existing and desired vehicle states.
Interrogation yields numerical values of six initializing
adjoint variables (Lagrange multipliers) in a calculus of
variations formulation of the trajectory optimization solution.
Because each new interrogation answers the optimum-path-
to-go question, a guided trajectory need not be restored, when
disturbed, to a preconceived nominal path, and optimality of
trajectory energy management and accuracy of guidance are not
compromised by disturbances within maneuvering limits of the
vehicle.  In the two-point-boundary-value guidance
application, the role of the polynomial network is to compress
a large library of multivariate trajectory information and
render it in a form (the nctwork) suitable for virtually
instantancous look-up and interpolation.

Fig. 4 is a diagram for networks trained to estimate two of
the initializing adjoint variables for a specific flight vehicle
guidance application. These networks were synthesized from
a data base of 435 observations of the candidate variables.
Ten variables were selected by ASPN for inclusion in the final
model. The information presented in cach box refers
respectively to the index of the element (in the list of
clements saved by ASPN during synthesis), the type of
element (in terms of number of inputs), and the number of terms
in cach cubic expression after pruning according to a PSE




criterion. The "white” element computes a lincar combination
of its inputs.
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Fig. 4 An Adaptively Synthesized Polynomial Network

10. Projection Pursuit

The projection pursuit algorithm of Friedman et al.
(1974,1981,1984) which is so popular in statistical circles has
not previously been discussed in the context of learning
networks. This algorithm adaptively synthesizes a three-
layer network in the form of fig.5. The first-layer functions
implement linear combinations Zeﬂxi for ordinary projection
pursuit (or Z%k%k (x) for a generalization of projection pursuit
to be discussed below). The second-layer functions g,(z) are
nonparametrically estimated functions of one variable.
Finally, the third layer simply takes a linear combination
28,8 Thus the function implemented is

(e 8,8 =5 B gy (5 6 %) -

17 g, [ ]

: r—f(x‘,...x‘)

Fig. 5. Network Diagram for Projection Pursuit

The estimation strategy of projection pursuit proceeds
vertically through the levels indicated in fig.5. On each
level, an iterative Gauss-Newton algorithm is employed
which alternates between estimation of the parameters 8 from
the first layer and the function g, from the second layer so
that in linear combination with the preceeding levels the fit
is optimized (using the sum of squared errors or a likelihood
criterion). Here the use of the optimized lincar combination
LB, 8, is a relaxation method suggested by Lee Jones (1986) as
an improvement over the original method (which estimates g,
to fit the error y - ( g, +..+ g, ).
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To estimate the functions g(z), Friedman et al. utilize a
nonparametric smoothing technique involving locally linear
functions (the linear fit at an arbitrary point z is estimated
using the data in a neighborhood of that point).
Nevertheless, the methodology also works with other one-
dimensional nonparametric estimation techniques such as
smoothing splines or variable degree polynomials.

Projection pursuit provides an excellent example of a
learning network with both parametrically and
nonparametrically estimated elements. Also, it demonstrates
an effective iterative strategy for estimating the elements of a
layer of a network to work well in combination with each
other rather than in isolation.

An advantage of projection pursuit networks is that they
have been amenable to theoretical examination of some of
their approximation properties (Huber 1985, Donoho and
Johnstone 1985, Jones 1987), although much work remains to be
done in this direction. In particular it is known that any
square integrable function can be approximated by a
theoretical analog of projection pursuit, provided sufficiently
many (vertical) levels of the network are utilized; however,
the analogous result for data-driven estimation has yet to be
established.

11. Additive Models and Transformations

Additive models represent functions of the form Xg,(x,),
where in  general the one-dimensional functions g, are
unconstrained and in practice usually are estimated non-
parametrically. (In contrast, linear models estimate only the
coefficients of linear combinations of fixed functions.) The
theory for the estimation of additive functions is developed in
Stone (1985). In particular, Stone demonstrates the surprising
result that, unlike general functions of d variables, additive
functions can be estimated with a convergence rate for the
expected squared error which is as good as the rate which can
be obtained for the estimation of one-dimensional functions
(n2r12r+1) jnstead of n2"(2+4) where n is the sample size, r is
the assumed order of smoothness, and d is the dimension; see
section 14 below). Moreover, Stone showed that although not
every function is additive, a best additive approximation to a
function exists and can be estimated at the indicated rate.
Stone's approach to estimating the additive functions is to use
finite dimensional linear spaces of functions (such as splines,
polynomials, or truncated trigonometric series — in particular
Stone uses splines), so that the resulting additive
approximation is then written in terms of a linear function of
many fixed basis functions, in which case traditional least
squares projection becomes applicable.

Winsberg and Ramsay (1980) and Tibshirani (1988)
generalize additive approximation by permitting monotone
transformations h(y) of the dependent variable. By inverting
this transformation, an approximation to the dependent
variable is obtained in the form depicted in fig. 6 with g=h'!.
A related model is in Breiman and Friedman (1985) where
noninvertible transformations h are permitted.

x g]

f(xl,...x‘)

x g‘

Fig. 6. Network for Transformations of Additive Models

Networks as in fig. 6 can be estimated by alternating
between estimates of the transformation g and the first layer




functions g, using methods similar to projection pursuit. In
particular, suppose finite series approximations are used for
each of the functions g,. Given a current estimate of g (which
is assumed to be a differentiable function), a Gauss-Newton
type algorithm can be used for the estimation of the
coefficients 1n a finite series approximation of the g,. Then,
given the current g,, the new estimate of g can be obtained by
any of several nonparametric methods (e.g. least squares
projection onto a linear space of approximating functions, local
linear smoothing, etc.). These steps are then iterated until
only negligible improvement in the optimization criterion is
observed.

Our purpose for mentioning additive models in the context
of networks is that this structure is the one which is best
understood theoretically (except perhaps for linear
discriminate functions and linear regressions which have even
less approximation capabilities) and, moreover, the additive
structure is a basic building block for more elaborate networks
which show some promise. Although additive models cannot
represent interactions between variables, interactions can be
obtained by taking sums of transformations of additive models
as seen below.

12. Generalizations

It appears to s that certain extensions to the network
forms of projection pursuit or transformations of additive
functions lead naturally to a particular network structure
which is known to have powerful approximation capabilities.
The statistical estimation strategies associated with
projection pursuit and additive models then lead to estimation
strategies for these more complex network forms.

In particular, consider networks of the form given in fig. 7.
This form may be regarded as a projection pursuit network,
generalized to allow transformations of the original variables
on the first layer. Using series approximations (e.g.
polynomials) for these transformations, the projection pursuit
estimation algorithm becomes applicable to this network as
discussed in section 10. Alternatively, the network of fig. 7
may be thought of as a composition of additive functions.
Specifically, the network consists of 2d+1 additive functions
with outputs z,, z,,..., Z,,,;, say, which become the inputs to a
final additive function with output f. Whereas none of the
lower layer additive portions of the network can approximate
every function, the composition of these functions can
approximate any continuous function as discussed in section 13
below. In principle, any of the methods for estimating
transformations of additive models can be used to estimate the
k’th such function by fitting the model to the error resulting
from the sum of the previous k-1 models. However, such
iterative approximations may require more than the 2d+1
levels indicated by the theory.

A specific implementation of a generalized projection
pursuit algorithm which incorporates some of the features
mentioned above is being developed by A.R. Barron and Gayle
Nygaard. It will permit the use of polynomial, spline, or
trigonometric series approximations for any of the
transformations of the network. A new feature of this
algorithm is that, when estimating g, in fig. 7, the
transformations g,, g,..» 8.1 are backfitted to provide the
best additive combination by projecting to sums of basis
functions in the manner of Stone (1985). Moreover, after each
transformation is estimated, a backward stepwise rule (using a
penalized squared ervor or complexity criterion) is used to
prune unnecessary terms from each clement. In view of the
relatively large (but fixed) size of the network structure, this
pruning of the number of coefficients is essential to avoid
overfit with moderate sample sizes. The most important
generalization is to permit nonparametrically estimated
transformations of the variables so as to achieve "projections”
to surfaces more general than the hyperplancs utilized in
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traditional projection pursuit. It is then expected that fewer
numbers of projections are required (perhaps as few as 2d+1).

13. Mathematical Foundations

Consider continuous functions f(x,,..., x,) of d variables on
a bounded set such as the unit cube [0,1]¢. Upon reflection it
appears that all familiar functions of three or more variables
are built up from the composition of various functions of one or
two variables. (For instance a sum of 4 variables is a
composition of -1 bivariate sums.) Accustomed to t-e traps of
mathematical analysis, one might speculate that there exist
truly d-dimensional functions that cannot be represented in
this way. On the contrary, Kolmogorov (1957), see also
Lorentz (1966), proved the surprising result that every
continuous function on {0,1]¢ can be exactly represented as a
composition of sums and continuous one-dimensional functions.

Lorentz (1966} identified a particular composition scheme
(depicted in fig. 2) which works for all functions of a given
dimension. For any continuous function f on [0,1 4, there exist
continuous one-dimensional functions g; and h,.,t for
j=1, 2,...,2d+1 and k=1, 2,..., d such that

fxg x4 )=28,';hjk(xk)) (8)
]

Moreover, Lorentz demonstrated the existence of universal
functions h, which do not depend on the function f (whereas

the 8 do depend on f). In his proof, Lorentz constructs

piecewise linear functions g/® with the property that for

every x in the cube the majority (i.e. at least d+1) of the
values g,.‘f’ (Zhi(x)) (for j=1,..., 2d+1) are within € of f(x).
(This proof suggests that it might be more natural to use the
median of g; X By Ve 82ds1 (X hy4,p. ki instead of the sum
to approximate f.) The proof of the existence of an exact
representation involves a careful limiting argument with
€—-0.
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Fig. 7. Kolmogorov-Lorentz Network

In general the functions g for which the representation is
valid may be rather irregular (e.g. nondifferentiable). It is
reasonable to expect, that for sufficiently regular functions f,
relatively smooth elements g and h, can be used in the re-
presentation, especially if the llllk are allowed to depend on f.

One way to quantify the smoothness of a function is the
characteristic s. A function of d variables has characteristic
s = p/d, where p = r + o if all derivatives of order r are
Lipshitz continuous of order @ where 0 < @ <1 (this is the case
witha =1, r=p-1if the derivatives of order p are bounded).
(This smoothness characteristic is used by Stone (1982) to
obtain minimax rates of convergence of nonparametric
estimators, see below.) Kolmogorov (1959), see also Lorentz
(1966), proved that not every function with a given smoothness
characteristic can be represented as a composition of functions




having a larger smoothness characteristic. This means, for
instance, that there exist functions of ten variables which are
differentiable up to order ten that cannot be represented by
compositions using one-dimensional functions having more
than one derivative.

The limitations expressed by these theoretical results do
not preclude the possibility that many of the practically
occurring functions which one might wish to estimate are
representable in terms of low-dimensional functions of large
smoothness characteristic. For instance, it might be true that
infinitely differentiable functions can be represented in terms
of compositions of infinitely differentiable functions of low
dimensionality.

The appeal of the Kolmogorov-Lorentz representation
compared to other familiar network structures is the economy
of network nodes. A fixed number of one-dimensional
continuous functions (namely (d+1)2d+1)) suffices to give an
approximation or even an exact representation.

Other network structures are known to possess
approximation capabilities, but generally the number of
network nodes depends on the function being approximated and
the desired accuracy. Subsequent to our Interface presentation,
George Cybenko informed us of some of his recent results
(Cybenko 1988). Consider three-layer networks in which the
clement in the final layer takes a linear combination of its
inputs and the first two layers are restricted to elements in the
form of equation (1), each of which uses the same nonlinear
transformation h. This function 4 is permitted to be any fixed
continuous strictly increasing function with bounded range.
Cybenko proved that for any continuous function f on a d-
dimensional cube and any £ > 0, there exists a three-layer
network with elements of the form (1) that approximates f
with error uniformly less than €. His proof is to show that the
first two layers of the network may be used to implement
kernel functions ("approximations to the identity”) of
appropriate bandwidths having arbitrary centers, from
which the result follows by taking an appropriate linear
combination. Cybenko also points out that two-layer networks
are sufficient if quadratic ¢ functions are used in first layer
clements of the form (3), for then certain kernel functions may
be constructed by taking linear combinations of these elements.
Although Cybenko does not refer to the rich collection of
statistical literature on kernel approximation (see the books
by Prakasa Rao 1983, Devroye 1987, or Eubanks 1988), it is
apparent that results in this area could be utilized to bound
the number of kernels (and hence the number of nodes in
Cybenko's networks) required to achicve a given accuracy.

Some basic results in mathematical analysis which have
impact on the approximation capabilities of network forms
should not be overlooked. The Weierstrass theorem and its
generalization to multivariate functions asserts that any
continuous function on [0,1)4 can be unijformly approximated by
a sufficiently large degree polynomial. The polynomial
approximations need not be restricted to the canonical sum of
products form ):,ka,"7...xdkd(which is itself a large network of
simple structure), indeed, the multivariate gencralization of
Weierstrass's thcorem is secn to be an immediate corollary to
the Kolmogorov-Lorentz representation theorem.

Other multivariate forms are known to approximate
arbitrary continuous functions. For instance, finite
trigonometric sums X, (a,cos(nkx) + B,sin(nkx)) can
uniformly approximate any continuous function on [0,1}¢,
provided the function is continously extended to satisfy
boundary conditions on |-1,1]¢ (sce Lorentz 1966, p.87). Here
k=(ky,. ky)and kx= Z]k X, We remark that the sin and
cos functions have bounded variation, so they can be
represented as the difference of monotone functions h.
Consequently, the trigonometric sum is a two-layer network
with first layer elements having the form (1). This gives a
simple proof of Cybenko's theorem specialized to such h.
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The Jackson theorems express bounds on the accuracy of a
polynomial or trigonometric approximation in terms of the
assumed smoothness of the function being approximated. (Se~
Jackson 1930 for a lucid treatment of the univariate case ar.d
Lorentz 1966, especially pp. 87-90, for multivariate
extensions.) For instance, if a function f has partial
derivatives Jf/ox} of order r 20 which are Lipshitz of order

0 < a <1, then there is a constant ¢ such that forevery N2>1a
polynomial approximation of degree N (in each coordinate)
exists with error uniformly less than ¢N? , where p=r + a.
Unfcrtunately, Jackson type theorems are not known for
polynomial approximations which take a network form other
than a sum of products.

14. Some Limitations on the Statistical Accuracy of Learning
Networks

In practice, learning network approximations are not
obtained from completely known functions, but rather they are
estimated from a training sample of observations of relevant
variables. The sample is typically a sequence of input/output
pairs X;, Y, ... X, Y, which is assumed to possess one of
several possible probabilistic structures as discussed
previously. There is a fundamental question which is
addressed for this class of problems: What is the relationship
between the achievable accuracy and the size n of the sample?
Typically it is found that the answer depends on the class of
possible functions. Especially critical are the dimension d and
the regularity of the function. Results from approximation
theory play a key role in these statistical considerations. Thr
presently known answers, which we discuss below, are
somewhat discouraging, especially with regard to practical
contraints imposed on the dimensionality. To understand
better and to avnid the pitfails of high dimensionality, it is
suggested that new approximation theory and estimation
results are needed for specific network composition strategies.

Stone (1982) has fundamental results concerning a class of
nonparametric estimation problems which includes curve or
surface fitting with normally distributed errors and binary
classification with unknown conditional class probability
functions. Attention is restricted to functions on a bounded sct
with a given smoothness characteristic s = p/d (in the sense
that all cross partial derivatives of total order r are Lipshitz
of order a and p = r + a as above). Stone establishes that the

optimal rate of convergence is €, = n"*'**1 for the LY norms
V<g<oo) and €, = n log nP!?5*V for the L™ norm. This means
that there exist estimaiors ?n (depending only on the sample)
A
such that the ratio |1 f, W1/, is bounded in probability for all
functions f of the givansmoothncss class. Conversely, for any
sequence of estimators f | there exist sequences of functions f of
the given smoothness class for which the ratio 11f- ?" /e, is

bounded away from zero in probability, as n — . To achieve
the optimal rate of convergence, Stone (1982) uses local
polynomial regression. The value of the estimator f_(x) at a
point x is obtained by a weighted lcast squares polynomial fit
using all data points for which the distance from x is less than
8, Stone chooses the sequence §, to converge to zero at *a.»
n112p+@) and he chooses the local polynomials to have total
degree r.

For convergence of the mean integrated squared error
(MISE) uniformly over all functions which have a bound on
the L2 norm of drivatives of order p, the optimal convergence
rate is of the form n P2+ Indeed, a consequence of Stone's
result is that this asymptotic rate cannot be improved. This
rate is achieved in regression contexts by multivariate
smoothing splines (Cox 1984) and in some cases by least squares
polynomial regression and trigonometric scrics regression, see
Cox (1988). A. R. Barron (1988) has analogous results for the




estimation of a log-density function. For the specia’ case d=1,
asymptotic (and in some cases exact) minimax estimators are
found in Efroimovich and Pinsker (1983) for density
estimatic n, and Nussbaum (1985) and Speckman (1985) for
regression. In these univariate cases the constant c(lf) is
determined in the asymptotic minimax error c(p)n2P/(2p+1),
For d>1, it appears that the corresponding constant c(p,d) for
exact asymptotics c(p,d)In 2P/(2P+4) is not yet explicitly
determined. Determination of the behavior of this constant
for large d would be useful, since it would help determine
whether practical minimax estimation is possible in high
dimensions.

Observe that unless the degree of smoothness p is large
compared to the dimension d, the optimum rate of convergence
n'Pl2p+d) s disappointingly slow. For instance, with
dimension d = 8 and smoothness p = 2, a sanple of size n 210
(one million!) would be required to make n?/%*% be not
greater than 1/10.

The slow rates for optimal estimation of smooth functions
in high dimensions suggest that to understand the practical
success of certain high-dimensional estimation strategies it
may be necessary to use notions of the regularity of a function
other than differentiability to quantify the limits on
statistical accuracy. One possibility is to assume proximity of
the desired function to functions of low Kolmogorov
complexity. It may then be possible to obtain rate of
convergence results as well as the consistency results referred
to in section 5 (for networks selected by complexity
regularization). This is a topic of further investigation.

Ir recent work by Baum "and Haussler, the Vapnik-
Chervonkis dimension of families of network functions is
characterized and used to quantify the statistical reliability
of estimated networks for binary classification. Using results
of Cover (1965, 1967) on the number of possible dichotomies of
a sample by networks of thresholded linear clements, Baum
(1988) has bounded the Vapnik-Chervonkis dimension in
terms of the total number of coefficients in the network. Let
O<gy<e<1 be given. Suppose it is observed that the fraction of

crrors of an estimated network is less than ¢ on a training
sample of size n. Then it is of interest to bound the conditional
probability that a fraction of at least €, errors will be incurred
by this network on an independent test sample. Baum and
Haussler (1988) have some results in this direction, assuming
that the total number of coefficients is sufficiently small
compared to the sample size.

The advantage of the Baum and Haussler approach is its
uesfulness in retrospective analysis: i.e., given that an
accurate estimate has been found on trainirg data, what is the
probability of error likely to be on new data? This approach
avoids questions concerning the approximation capabilities of
a network: in particular, the probability that an estimated
network will achicve a certain accuracy is not determined.

15, Conclusions

Historically, neural networks, adaptive polynomial
learning, and nonparametric statistical inference are fields of
inquiry with distinct perspectives and scparate lines of
development which have crossed paths cnly on occasion.
However, by examining the purpose, scope, and
methodologies in these ficlds, considerable commonality is
revealed.  In cach case, network functions are used to
approximate possibly complex multivariate relationships by
composition of many simpler relationships.  Moreover,
strategies for the synthesis of these netwe.ks from observable
data are developed. To understand the periormance of these
strategies and to suggest improved methodologics, practical
experience is supplemented by an understunding of the basic
disciplines of mathematical approximation theory and
statistical decision theory. Conversely, it behooves the
practitioner in multivariate nonparamctric  statistical
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inference to become aware of the benefits and experiences in
the use of multiple-layered networks for classification,
regression, and related problems.

In our experience the most successful learning network
methodologies adaptively grow the network structure, using
all the observational data (in batch rather than recursively)
and using an appropriate model selection criterion to ensure a
parsimonious network. Moreover, the best strategies employ
network structures which are not limited in their
approximational capabilities. The principle examples of
these successful methodologies are adaptively synthesized
polymomial networks and projection pursuit.

It appears to us that several different approaches 'ead
inevitably to one network structure and similar synthesis
strategies: namely the netwo: . of fig. 7 (introduced by
Kolmog.rov and Lorentz) estimated by a generalization of
projection pursuit which incorporates additive projections or
estimated by polynomial network strategies specialized to
this structure. This network considerably extends the
capabilities of existing projection pursuit and additive
regression models, yet retains enough of the regularity of these
models that it may be amenable to further theoretical and
practical examinations of its properties. Nevertheless, we
should not restrict all attention to just one network structure.
Hopefully, by ccnsideration of a variety of different
compositions, empirically selecting the best (say by
complexity regularization), discovery of the true
relationships can occur.

Appendix: Convergence of networks estimated by complexity
regularization

In this appendix we specializec somc results from A.R.
Barron (1985,1987) to show convergence of estimates of net-
work functions. In general the theory is concerned with the
sclection of a probability distribution using random duta
W= (W, W,...W,). Itis assumed that T is a countable col-
lection of probability distributions which are candidates for the
estimate of the distribution of the process W | W ,,... and that
L(P), P e I arc positive numbers which satisly the Kraft-
McMillan inequality ¥, 274 < 1. (Here L(P) may be
regarded as the length of a uniquely de~odnble code or 2-L (P
may be regarded as . discrete prior probability ¥ Short lengths
L (P} are desired for as large as possible a sct of distributions
that can be computed, so idcally, we would let L (P) be the
Kolmogorov complexity (relative to a fixed universal computer)
and T would be the sct of all computable distributions; how-
cver, the determination of such an ideal complexity is practi-
cally infeasible. Neverth ess, the comp'exity principle provides
a useful guide in sclecting reasonab'e sets of distributions and
assigning priors gearcd toward parsimonious  distributions.
When the distribution is known except for a function f of d
variables on which the distribution P, depends, then familics of
network functions and corresponding description lengths can be
uscd to yield an effective criterion for selecting an appropriate
nctwork.

In gencral the complexity reguilarizawon cstimator £, is
defined to achicve

- LYE TN . \
r;\enr\( fog p" (W . ..., W, )+ L(P)} (9

Here the density functions p® are taken with respect o a fixed

dommaung mecasure.  Logardhms are taken bhase 2. When
W W, are discretized random varubles, then
Slog p(W WY Cupon rounding up to the nearest intega s

the length of a Shannon code for these varnables based on the
distribution P a4 the term L (P) s the length of a preamble
required to specily which distnibution. A more general form of
complexaty regularizanon s 1o minumize

CR - logp™(W™y v AL (1




where A may be regarded as a Lagrange multiplier. Unless
A =1, CR docs not have the same total description length
interpretation. Nevertheless, the solutions P, which minimize
CR for A > 0 do have the valid interpretation as maximum
likclihood estimators subject to complexity constraints, Such
cstimators were first proposed by Cover (1972). Our conver-
gence results require that A 2 1 be fixed, although in onc case
A > 1 is required.

We mention several general convergenee results.  First
suppose that the distributions P in [ are stationary and crgodic.
Let P* denote the true probability law which governs the pro-
cess. The first result s that if P € T then the estimated distribu-
tion is exactly correct, P,= P for all large n. with probability
one. For the remaining results suppose that the variables W,
arc independent and identically distributed with respect 1o P,
and likewise that independence holds for the distributions in T,
whence p(W,....W,) = []p(W,). Morcover, it is assumed
that the true density function p° can be approximaled by densi-
ties in T in an information thcoretic sensc: that is, there exist
densitics in T for which the rclative cntropy [ p” log p”/p is
arbitrarily small. This leads to the sccond resull that £, => P°
(in the scnse of weak convergence) with probability one;
morcover, if the densitics in T are uniformly equicontinuous
then p, —p° in L' Since the uniform equicontinuity is not
easy o guaranicc in general, we mention a third result which
makes no such requirement ff A > 1 and if densities in T can
approximaie p° in the relagive entropy sense, then p, = p° in L !
that is im | 1 py~p" 1 = 0. with probability one. The sccond and
third results continue to be valid (with convergence in probabil-
ity statements rcplacing convergence with probability onc)
when the set T, and the numbers L, (P) are allowed to depend
on the sample size n, provided that there exists a scquences of
densities p, in T, for which lim J p logp'ip, =0 and
im L (Py/n = (.

For the estimation of nctwork functions wc take
W, = (X,.Y,) which is assumed to have a distribution P, which
depend on the function we desire to cstimate. A denumerable
(possibly finite) coliection S, of paramcterized famihies of net-
work functions f(x.8) is considered. We assumc that the
scquence of collections s increasing S, S, - -+ and that
L{f), feS are lengths of codes which spceify the structure,
but not the parameter values, of networks in § = () ,S,. For
cach network family £, the paramcter vector (which has dimen-
sion denoled by &, ), is assumed for convenience to take values
i the umit cube 10,17, (Families with larger rectangular
parameter spaces can be reduced to this case by scaling and
approprialely modifying the definition of f). We restrict atten-
tion to the lattice 2, , of points with coordinates of the form
ivn for integers 0< i< Vo and wc use (1/2) log n bits per
paramcter to describe these points.

For cach parametrized nctwork f(x.9) in §,, let 9. be
estimated by the mcthod of maximum hkclihood restricted to
the parameter values of the given precision. Thus 9, achicves

pOW I f(.8,))= max P(W"1f(.0). (1)
ae(l__,,

The compiexity regularization estimator 15 the network f,
Jehined to achieve

. k
miny s |- log pIW (.0, + l-T/ logn + AL S QD)

We remark that other precisions than (1/2) log a bits could be
used 1 the definition, provided the maximum likehhood esti-
mator s suitably restricted. (For smooth familics, a sccond
order Taylor serics argurent shows that the present choice
achieves roughly the best tradeoff between complexity and
likelthood. In some cases an smproved tradeoff is obtained
using local reparametnizations as dictated by the Fisher informa-
tion matrix, as in A.R. Barron (1$85. p. 74). With A = 1, the
speciafization of the complexity regularization criterion given i
(12) is very much the same as Rissanen's MDL criterion.

~02

However, the L (f) term (omitied by Rissanen) can be impor-
tant, especially when there is a large varicty of familics under
consideration,

As a special case of interest consider function fitting prob-
lems with Gausssian crrors. In this case, for given X, the con-
ditional distribution of the crror ¥ - £ (X)) is normal with mean
zero and variance o2 The X, are assumed to be randomly
sclected, indcpendently, from a distnibution which does not
depend on f. Then the complexity regularization criterion
reduces to

1

CR = —
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" A k
T(Y,-f(X,.8)% + A—Zf— logn + AL(f).  (13)

i=1

Let f° be the truc function which we desirc to estimate.
Assuming the the nctwork in § arc continuous functions of
their parameters, the information theorctic closure condition
reduces (in  the Gaussian case) to the condition that
in(/eginfaE(f'(X)—f(X.O))Z. i.c. the truc function must be
approximabic in the L ? sense by members of network familics
undcr consideration. In which case, networks f,, (X)) which are
sclected to minimize (13) (with A> 1) arc guaranteed to con-
verge 1o f°(X) in probability.
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MARKOV CHAINS ARISBING IN COLLECTIVE COMPUTATION NETWORKS
WITH ADDITIVE NOISE

Robert H.

ABSTRACT

Recent progress in modelling connec-
tionist ("neural") networks gives rise to
the expectation that future comput.ng
systems will employ coprocessors in which
large numbers of memoryless, nonlinear
processing units interact through plastic
connections. Hopfield has drawn atten-
tion to symmetrically interconnected net-
works of binary threshold units. These
collective computation networks converge
rapidly to stable states corresponding to
local minima of the computational energy.
The network can be freed from local min-
ima by the addition of noise at the input
of each neuron-like unit. The state then
takes a random walk on the 2" vertices of
a hypercube, where N is the number of
"neurons". This paper uses a simple, ex-
plicit algorithm to study the behavior of
collective computation networks with ad-
ditive noise. The algorithm gives rise
to a stationary Boltzmann distribution of
the network state. Formulas for the tem-
peratures of non-logistic noises are
derived and tested in Monte Carlo trials.

INTRODUCTION

This concerns one of the folk theorems
of statistical neurodynamics, which holds
that the states of a globally asymptoti-
cally stable neural network, subjected to
isothermal agitation, occur with relative
frequencies given by the Boltzmann dis-
tribution. Global asymptotic stability
follows from the existence of an energy
function H of the networks state 8. This
was d@scovered by Hopfield {3], whose ex-
pression

H(B) =

N N-1 N
- Z ZSIS]TI] - iglsiui (1)

j=i+1 i=1

for the computational energy of the net-
work is analogous to the Hamiltonian of a
collection of interacting magnetic di-
poles. Here S; is the state of the i-th
neuron-like element--either firing at its
peak rate (S;=1) or resting (S;=0); and
the connectivity matrix ||T--|T gives the
strength of the "synapse" tﬁ}ough which
the i-th unit excites (if T;4>0) or in-
hibits (if T;.<0) the j-th unit. The
state of the i-th unit is decided by a
threshold test applied to its input,

N
X; = j};_'lsjrji + Uj. (2.1)
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The binary "McCulloch-Pitts neuron" obeys
the rule

1 if Xi > 0
i . (2.2)
0 1if Xi < 0.

wWhen the T-matrix is real-valued and sym-
metric, with all zeros on the diagonal,
the network evolves toward stable states
which correspond to local minima of the
computational energy. The "energy land-
scape™ can be configured so that these
local minima correspond to solutions of
constrained optimization and pattern
recognition problems {7,8]. In the lat-
ter case, the vector U of inputs to the N
units might represent the pixel pattern
on a retina.

"BOLTZMANN MACHINES"

A provocative paper by Ackley, Hinton
and Sejnowski [1] proposed simulated an-
nealing to dislodge the Hopfield network
from local minima and enable it to settle
into states of still lower energy which
would represent better (if still
suboptimal) solutions. The network is
"heated" by the addition of noise to the
input of each unit. When these noises
are independent, identically distributed
random variables, the state 8 takes a
random walk on the 2% vertices of a hy-
percube. The stationary distribution is
Pr(8 = 8) = exp[-gH(8)]/ X exp[-gH(s8’)].

8

(3)
The assertion of Ackley, Hinton and Sej-
nowski, that 1/8 = T is the root mean in-
tensity of noise described by a logistic
distribution, was not powerfully
motivated. Shaw et. al. [6] had earlier
arrived at an expression like (3) in
which 8 is a "smearing factor" determined
from details of a stochastic model of the
chemical synapse.

It was over a hundred years ago that
Gibbs sought time-invariant solutions to
a Liouville equation in which the inde-
pendent variables were the Hamiltonian
coordinates of a multiparticle system and
the dependent variable was the probabil-
ity of the system being in a given state.
He arrived at a canonical ensemble in
which "the index of probability [ie., the
log-probability] is a linear function of
the energy" of the state. This result is
expressed by equation (3), called a
Boltzmann distribution. Other functions
of the energy, however, will serve this




purpose; and the fact that the linear de-
pendence (of log~probability on energy)
maximizes the entropy of the system is
not necessarily germane to the gquestion.
Belief in the possibility of a mathemati-
cal treatment of biological intelligence,
patterned after statistical thermo-~
dynamics, goes back at least as far as
the works of John Von Neumann, published
posthumously. For this belief to find
expression in contemporary neural network
research is not surprising. The mathe-
matician who studies this work must be
slightly bewildered by derivations which
appeal to analogies with statistical
physics, some of which are complicated by
psychological theory {5]. The validity
of the Boltzmann distribution, in the
context of the connectionist paradigm,
solely dependent on the existence of
models which give rise to it. As far as
real neuronal networks are concerned, the
laboratory experiments which would verify
the result have yet to be defined.

is

The Algorithm

The computational technique of simu-
lated annealing traces its roots to the
Metropolis [4] algorithm, which updates
the state of an N-particle system accord-
ing to a stochastic model in which the
Boltzmann distribution is expressly
assumed beforehand. An alternative
derivation due to C. R. Darnafalski, the
amateur mathematician whose unpublished
essays have been cited elsewhere [2],
involves the following stochastic model:
Pick an integer i e(1,...,N}) at random.
Compute X; according to (2.1). Modify X;
by the addition of a real random vari-
able, call it Y,, which is symmetrically
distributed about a mean of zero. Com-
pute S; according to (2.2). These steps
are iterated indefinitely with indepen-
dent, identically distributed random num-
bers {(Y¥,, k=1,2,...}). It is not hard to
see that this gives rise to a sequence
{8y, k= 1,2,...) of states which con-
stitute a Markov chain. Nonzero prob-
abilities are attributed to transitions
which involve at most one component of
the state vector. With no external input
(0 = 0), these probabilities depend on
the T4 and the distribution of Y, as
descrlged in the Appendix. When
Hopfield’s conditions are obeyed by the
former, the stationary distribution can
be derived analytically. This distribu-

tion is
z71 exp(

N N-1
2L X sisylog(F(Ti4)/(1-F(T145))}) ,
j=i+l1 i=1 )

Pr(8 = 8) =

(4)

in which F is the (cumulative) distribu-
tion function of Y and the denominator 2
is the sum over all states which normal-
izes the discrete density. The assump-
tion of logistic noise, as
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1/(1 + e BYy, -

F(y) = o<y <o,

(5)
gives the last equation a particularly
simple form (3).

Asymptotic Temperature
With regard to (4), suppose that the

root mean intensity of the noise is large
compared to each T;35 = t. Then the first
order Taylor series”expansion of the
logarithm is

log(F(t)/[1-F(t)]) =
since F(0)=1/2. Defining the asymptotic

temperature T, of the network in such a
manner that §=1/T, in (3), we shall have

4tF’ (0)

Ty = 1/{4£(0)] (6)
in terms of the probability density f(y)
= F’(y). When (5) is assumed, the last
equation is indeed valid for g =1/T. If
the noise were normally distributed with
standard deviation ¢, then the asymptotic
temperature would be

TyorMar = (70/2)Y/2/2.

If the no%se had a Cauchy density f(y) =
(1/r)c/(c +y2), the temperature would be

TcaucHy = 7¢/4-.

Clearly this asymptotic temperature is
not a function of the mean noise inten-
sity, since the variance of the Cauchy
random variable is undefined.

SIMULATIONS

Figure 1 represents a Hopfield n2t of
four units in which the labeled segments
give the dimensionless strengths of the
symmetric interconnections. Let the in-
puts to units 1 and 2 be denoted A and B,
respectively; and let S; = C. We shall
consider only binary (0,1} inputs. The
insets suggest that this small network
performs the NAND (Not-AND) logic func-
tion C(AB) which the truth table (right)
defines. This would indeed be the case
if the network always settled into the
state which gives the global or absolute
minimum energy. Table 1 uses the formula

4 .
m(s) = 2. sizl'l
i=1

to assign a natural number m to each of
the 16 states of the network; and it
lists (-1 times) the energies of the
states for each input condition AB (00,
01,10,11). With input AB=11, the minimum
energy is -2.5 and it occurs in state m=3
for which C is zero. With the other in-
puts, the minimum energy is -2.0 and oc-
curs in state m=12 for which C=1. This
motivates the truth table of Figure 1.
Figure 2 is a state transition map to
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Figure 1. A Hopfield net of four units,
two of which receive binary inputs (A and
B) and one of which registers the output
(C). The T-matrix is specified by the
labels on the line segments linking the
units. This net is designed so that, for
given inputs, the global minimum energy
state gives a functional dependence
C(A,B) as shown in the truth table (inset
upper right), which defines the Not-AND
(NAND) logic functien.

show which transitions are allowed.

Since units are interrogated in a random
serial order, only one unit can toggle at
a time. Thus the allowed transitions are
of Hamming distance one. The 16 states
of the "NAND gate" correspond to squares
in the 4x4 array of the map. The squares
are labeled with the values m(8). Motion
is horizontal or vertical--never diagonal
--between adjacent squares. The map
wraps around horizontally and vertically
as indicated by the connecting lines and
arrows.

The interaction map of Figure 3 con-
sists of four sub-maps each with the
structure of the preceding Figure. Here
each square is labeled with -Hp (AB) =
-H(s(m) ,U[AB]). The four sub-maps cor-
respond to the four input conditions.
the network begins in state m=3 with
AB=11, the energy is minimized and the
state is stable. Now if the input
changes, the network is unable to leave
the initial state, because any allowed
transition will increase the energy.
Similarly, if the initial state is m=12,
and the input is subsequently set to
AB=11, the state cannot assume the
desired value (m=3) except by way of in-
termediate states of higher energy.

When noise is injected into the units
of the network, the state can be dis-
lodged from local (and global) energy
minima. The Boltzmann distribution of

If
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51 52 C S DECIMAL STATE
0000 0
1000 1
0100 2
0010 4
0001 8

ETC. :

Figure 2. The state transition map for
the network of Figure 1 uses the indi-
cated binary-to-decimal convention to as-
sign an integer (0 through 15) to each
state of the net. Each square represents
a state. Allowed transitions, which are
of Hamming distance one, correspond to
vertical or horizontal motion from one
square to one of four adjacent squares.

AB - 00 AB - 10
-1i2) 0 [-12]-302] o ; -1 ]-32[-12
0o | o | ok 12 0 L0 | -1
2] 0 [-12f.12 2] 0 [-12]-12
214112, 4172
+1/2) -V2] -12F -1/2 *WL~V%‘”1‘
0 | +1 [+5/2] -1/ [ 1] 0 [.32]-102
0 | +14 9 | 0 [ +1] 0
+2 |a0 le1/2]+3/2 2] 0 |<1/2/+32
PN,
+3/2[+1/2[+3/21+312 1120 12 +172]4172
AB - M aB - 01
Figure 3. The interaction (negative

energy) maps for each of the four inPut
conditions have the same format as Figure
2; but the squares are labled with -1
times the computational energies. Arrows
emphasize the entrapment of the four unit
"NAND gate" in local energy minima.




Table 1. Interaction values of the six-
teen states of the four unit NAND gate
indicating global maxima for each input
condition.

AB=
STATE 00 10 01 1
0 0 0 0 0
1 0 1 0 1
2 0 0 1 1
© -5 15 15 @
a 0 0 0 0
5 -5 5 ' 5
6 -5 -5 5
7 -5 5 5 15
8 0 0 0
9 -5 0 . 0
10 ' -1 0
1 -15 -5 -5 5
12 2 2 2 2
13 5 15 5 15
14 5 5 15 15
15 _5 5 5 15

the network state is indeed observed in
Monte Carlo trials with the network of
Figure 1, to an accuracy consistent with
sample size. Figure 4 shows the results
of one such test in which 999 observa-
tions of 8 were recorded at random inter-
vals in the course of ten thousand itera-
tions of the algorithm described above.
Here the input is AB=00 so that the modal
probability (ie., the probability of the
most likely state) is p;, = Pr(m(s]=12).
This test used logistic noise with tem-
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Figure 4. Theoretical and observed dis-
tributions of the network state with
logistic noise at a temperature T=1.
Sample distribution is based on 999 ob-
servations.
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Figure 5. Modal probability versus tem-
perature for the four unit "NAND gate”
with zero input using three kinds of
ncisze.

perature T=1.

When the noise is not logistic, devia-
tions from the Boltzmann distribution are
apparent, especially at lower tempera-
tures Figure 5 shows the variation of
the modal probability with temperature
for each of three noise distributions.

ANALYSIS AND CONCLUSION

One measure of the disparity of two
discrete probability densities, p and q,
is the directed divergence, or (Kullback)
information for discrimination against p
in favor of q:

I(q,P) = _dqplog(dn/pp) -
m

It is well known that, if q is a sample
distribution, obtained from J independent
observations of a random variable with
discrete density p, Pp > 0 for all me
(0,...M-1}, then the product JI(q,p) is
chi-square with M~1 degrees of freedom in
the limit M/J— 0. Then the mean value
of the product JI is approximately M-1
for large J; and values of JI in obvious
excess of M-1 will tend to refute the
null hypothesis p.

Table 2 shows the product JI of the
sample size and the discrimination infor-
mation with the Boltzmann distribution as
the null hypothesis. Each point repre-
sents about a thousand observations of
the state of the four unit "NAND gate" at

S




random intervals in the course of runs of
length 10,000. Three different noise
distributions are considered with the in-
put AB=00 at each of five temperatures.
The expected value of the statistic is M-
1 = 15 if the null hypothesis pertains.
With logistic noise, the observations are
below this criterion value in every case.
With Cauchy or with normal noise, the
null hypothesis is clearly rejected at
T=1/2. The case AB=11 is considered in

Table 2. Divergence of the N-sample dis-
tribution from the theoretical distri-
bution of the states of the four-unit
NAND gate.

input=(0,0) (1,1)
T LOGIS CAUCHY NORMAL  NORMAL
2.5 13.3 18.9 8.7 18.9
2.0 9.5 15.6 18.6 21.8
1.5 10.1 9.7 24.0 13.7
1.0 6.8 11.1 29.2 20.9
0.5 9.5 206.1 68.7 64.8

the right-most column normal noise; and
again the test statistic warrents rejec-
tion at T=1/2. These results might be
summarized by saying that the asymptotic
temperatures, calculated above for non-
logistic noises, are reasonable ap-
proximations when they equal or exceed
unit value.

APPENDIX

The purpose of this Appendix is to
derive the transition matrix of the
Mgrkov chain {8y, k=1,2,...}). Let 8 and
8- be the network state as a column and
row vector, respectively. Let 4; denote
a column vector which has N compgnents
the i-th of which is 844 in terms of the
Kronecker delta. Con513er just the case
of no input (U = 0). Then X; = 8"Td4
where T is the connecti.ity aatrix sdb-
ject to Hopfield’s restrictions. The al-
gorithm selects a j at random and com-
putes S; = 1(Xs + Y], where 1[.] is the
unit stap and } has d.f. F(y) and density
f(y), which is symmetric about y=0.

We want the probability of a transi-
tion from state s to state s + ds, where
ds = 41 = col(;

3 i3) if s3=0 and ds = -dj =
col(-474) if s 1]’ “nid probability,
denoteé Q(s+ds?s), is proportional to

1/N, the probability that j is selected,
and is given by
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]

(1/N)Pr(Y+xj < 0} if ds=-dj
in which X; is determined by s as noted.
These stat;ments are the same as

(1/N)Pr(¥+X5 > 0) if ds=dj
Q(s+ds|s) =

(1/N)F(stde) if ds = ay

(1/N)[1-F(stde)] if ds=-q.

Q(s+ds|s) = {
J

because of the symmetry of the distribu-
tion of Y. For transitions of zero Ham-
ming distance we shall have

Q(s|s) =1 - 2: Q(s+ds|s).
ds

For transitions of distance more than
one, the probability is zero, since the
algorithm specifies that the interroga-
tion of the units is one-at-a-time.
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Parallel Optimization via the Block Lanc-.-s Method

Stephen G. Nash and Ariela Sofes
George Mason University

Abstract.

Traditional optimization algorithms are not easily adap-
ted to parallel computers. Even though the linear alge-
bra operations can be programmed in parallel, the costs
associated with evaluating the objective function often
overwhelm the linear algebra costs, and so some paral-
lelism in the function evaluations is essential. This pa-
per describes how such parallelism can be obtained by
using the block Lanczos algorithm within a truncated-
Newton method. This algorithm also admits parallelism
in the linear algebra of the algorithm. The resulting algo-
rithms are suitable for coarse-grained parallel computers.
Details on arithmetic and communication costs are pro-

vided.

1. Introduction.

This paper describes an algorithm for solving

minimize f(z)

(1)

on a parallel computer. Here we assume that f(z) is a
smooth nonlinear real-valued function of n variables z.

A method for solving this problem was given in [10].
It is based on a truncated-Newton method [2]: given some
initial guess zq, at each iteration a search direction p is
computed by approximately solving the Newton equa-
tions using a block Lanczos method; then a step is taken
along that direction so that the function value decreases
(2441 = 7% + ap, whete f(ze11) < f(z1).

As was shown in [10], such an approach can lead to a
successful parallel algorithm. On a number of test prob-
lems, effective use of parallelism was made, both in the
linear algebra operations, as well as in parallel function
evaluations. The purpose of this paper is to analyze more
carefully the algorithm used to compute the search direc-
tion, the block Lanczos method. We give herc detailed
information on the arithmetic and communication costs
of that algorithm. Related discussions can be found in
13)].

Here is an outline of the paper: In Section 2 we give a
general discussion of the nonlinear optimization method.
In Section 3, we show how parallel and vector computer
hardware can be used within the block Lanczos method,
and list its costs. Section 4 contains our conclusions.

Other approaches to parallelism in optimization al-
gorithms are available; see, for example, [1] and [7].

2. The Optimization Algorithm.

The algorithm we have used to solve the problem (1) is a
descent method based on a line search. If z; is the current
approximation to a solution z*, then we set £, = x, 4
ap, where p is a local downhill (descent) direction for
f(z) at 23, and a > 0. The scalar parameter a is chosen
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so that f(zx,y) < f(zy); techniques for computing a can
be found in [4]. Under mild assumptions (see [3]) this
algorithm can be shown to converge to a point where the
gradient of f(z) is zero, i.e., the first-order conditions for
a minimum are satisfled. Our main interest here is the
computation of the direction p, since this is typically the
most expensive aspect of the optimization algorithm.

The classical approach to this problem is to use New-
ton’s method. If we expand f(z) in a Taylor series about
z;, we obtain

fzi +p) = f(zi) + pTgx + 1p7Gip + O(lIpI1%)
~ f(zi) + pTge + 3" Gap
= f(zx) + Q(p),

where g; = V f(x) is the gradient of f(z) at 4, and
Gr = V*f(zs) is the Hessian matrix. Q(p) is a quadratic
function in p, and it can be minimized by setting its
gradient with respect to p equal to zero, resulting in a set
of linear equations for p, called the Newton equations:

(2)

If Gy is positive definite, then the solution of (2) corre-
sponds to the minimum of Q(p), and p is used as a search
direction. Note that for this choice of p

Gip = —9k.

f(zx + ap) = f(zi) - 1a’9iGiar,

so that for small values of & we have f(zy +ap) < f(z4),
whenever g, # 0. Hence p is a local downhill direction
unless the first-order optimality conditions are satisfied.
If G is not positive definite, then a “nearby” positive-
definite approximation to G} should be used in place of
Gy n (2) {5}.

The resulting optimization method has an asymp-
totic quadratic rate of convergence, and this rapid con-
vergence rate is enticing, but solving (2) can be expensive
for large-scale problems, since it involves computing the
matrix of second derivatives and solving a large system of
linear equations at every iteration. As a result, we have
chosen to use a different technique to compute a search
direction.

Truncated-Newton methods are more suitable than
Newton's method for the solution of large-scale optimiza-
tion problems. The search direction p is computed as an
approximate solution of (2), obtained using an iterative
method for linear equations. Hence, a truncated-Newton
method is a nested iterative method: there is an “outer”
iteration for minimizing the function f(z), and an “in-
ner” jteration for solving the Newton equations (2). Here,
in order to introduce parallelism into the algorithm, we




have chosen to use the block Lanczos method. A more
common choice is the linear conjugate-gradient algorithm
|8].

Truncated-Newton methods are atiractive since they
can be programmed to have low storage and arithmetic
costs, not require the computation of the Hessian matrix,
converge rapidly, and be applicable to large problems.

Earlier examples of truncated-Newton methods ([2],
[9]), have been useful on vector computers [17), but have
not offered much scope for exploiting parallel computers.
By using a block Lanczos method for the inner iteration,
parallel computations are introduced, where the degree
of parallelism corresponds to the block size chosen, and
hence can be adapted to the number of processors avail-
able. The block algorithms also retain a great many vec-
tor operations, and thus can be effective on parallel com-
puters where each processor has vector hardware, such
as the Alliant and Intel iPSC/2 machines.

Such block methods for solving linear equations have
been described in [11] and [13]. The method used here
is based on the block Lanczos method [16]; this is not
the most straightforward choice, but it permits the nu-
merically stable treatement of non-convex optimization
problems (cf. [9]). (If the Hessian is not positive defi-
nite, the solution of the Newton equations may not be
a descent direction; the Lanczos method allows the de-
tection and correction of this difficulty. In addition, this
approach is numerically stable for a non-positive-definite
system of linear equations, unlike its theoretically equiv-
alent partner, the linear conjugate gradient method.)

We now provide the formulas for the block Lanczos
method. The algorithm minimizes Q(p) as a function of
p over a sequence of subspaces of increasing dimension.
A more detailed discussion of the block Lanczos method
can be found in the references cited above. The specific
formulation given here is taken from [10].

Let G be an n x n symmetric matrix. The block
Lanczos method with block-size m generates a sequence
of n x m orthogonal matrices { Vi } via:

Pick ¥} so that VVi = Im. Set Vo = Onxm,
ﬂl = Dmxm-
Fori=1,2,..
Set
VinBivt = GVi = View - Vi, (3)
where a; = V,-TGV,- and the m x m matrix
Bi+1 is chosen so that V.‘LVHI = Im.
Vi is computed as the result of a QR factorization applied
to the columns of the right-hand side in (3). The matrix
V1 can be obtained using a random-number generator.
We will assume that m divides n, although this is not
necessary, and that the algorithm proceeds as above for
the full n/m iterations (see below for a further discus-
sion).

Define the block matrix V;) = [V1|Va| - |W]; i exact
arithmetic were used in the above algorithmm, then we
would have V(T)V(,v) = I, and V(T)GV(.) = T{) where Tj;) is
a block tridiagonal matrix with m x m bloc~s:
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A method for solving (2) is obtained as follows: let
the first column of V) to be g/ ||g|ly, where g is the right-
hand side in (2). Solve

. -T T
Taw = =Viha = —llglyer,  er = (1,0,...,0)
for y;. Then p,, the i-th approximation to the solution of
(2), is obtained from p; = Vyyy:. Thisis equivalent to the
block conjugate gradient method in [11}; both algerithms
produce the same estimates of the solution of (2}, if exact
arithmetic is used.

This derivation is not suitable for computation since
the resulting algorithm is not iterative. However, by
adapting the derivation in {15], an iterative method can
be developed. Assume now that G is positive definite;
we will treat the indefinite case below. We use Gaussian
elimination to factor the block tridiagonal matrix:

_ T
T = Lo DLy ()
where Dy;) is a block diagonal matrix whose blocks are
themselves diagonal, and L(; is a block lower bidiagonal
matrix, with blocks the same size as in T{;). Define
— ~-T
Uiy = VL »

— 15 -11,T ..
sty = =Dy Ly Vigs

(8)
(6)

both U,y and s(;) can be generated iteratively. Then
pi = Vig¥i = ~(Vo L (D L Vihe) = Uwse), (1)

and so an iterative algorithm, referred to here as the
block Lanczos/CG method, is obtained. The formulas
for the algorithm and their associated costs are described
in more detail in the next section.

Minor adjustments to the algorithm are necessary if
{a) the algorithm converges early, (b) m does not divide
n, or (¢) there is loss of orthogonality due to rounding er-
rers. In such circumstances, when V;,, is computed only
the first m; < m columns may be linearly independent.
If this happens, then §;, will be an m x m; matrix and
Viy1 will be an n x my matrix. The remaining matrices
in the algorithm will also have to be adjusted, but the
formulas given above are still valid.

If f(z) is not convex, then G may not be positive
definite at every outer iteration. If this happens, then
at some iteration 1 the LDL7 factorization of Ty will
not be numerically stable. Another factorization could
be substituted (see [15] and |13]), but since we are more
interested in obtaining a descent direction than in solv-
ing (2), alternative techniques may make more sense. It
would be possible to use a modified matrix factorization,




as described in [4] and [9], or the algorithm could be
stopped at the iteration where indefiniteness appears. Ei-
ther approach will produce a descent direction.

3. Parallel and Vector Operations.

The block Lanczos method permits us to exploit parallel
and vector capabilities in nearly every aspect of the com-
putation of a search direction. In this section, we describe
in detail one way of implementing the algorithm, the one
used in [10], showing the arithmetic and communcation
costs associated with each step of the algorithm. To sim-
plify the discussion, we assume that the block size m is
equal to the number of processors. This is not essential
to the algorithm.

We shall consider each of the steps of the block Lanc-
z0s/CG algorithm in turn. We have implemented the al-
gorithm on an Intel iPSC/2 which has no global memory;
each processor has its own local memory. We tacitly as-
sume that that n will be much larger than m, although
the algorithm is valid without this assumption. Because
of this, each processor stores only a small number of vec-
tors of length n (one column of each of the n x m ma-
trices Vi, Vi1, GV;, Ui, Wy, plus one work vector), but
stores complete copies of the m x m matrices a, 3, L,
and L;;-;. If the number of processors were large, and
hence m was large, then other approaches would be rec-
ommended; see the comments at the end of this section.

In the following discussion, we will number the pro-
cessors from | to m, rather than the more usual 0 to
m - 1.

1. The Lanczos iteration—For nonlinear optimization,
and particularly when the objective function f(z)
is expensive to evaluation, this will typically be the
most expensive step in the method, and the place
where effective use of parallelism will be most essen-
tial. This step involves m independent matrix-vector
products, one for each column of V;. If the Hessian
G is available, GV, can be computed using tradi-
tional techniques. However, more often a matrix-
vector product will be approximated using {12]

(}: th?;) :-g_(z‘)

g
Guv ="~
v i

where g{z) is the gradient and h s a finite-difference
parameter. Since g{z) is the right-hand side of (2), it
is already available, and so a matrix-vector preduct
can be approximated using a single gradient evalua-
tion, and GV, can be approximated by m indepen-
dent gradient evaluations, one per processor. Thus
we can make effective use of parallel gradient evalu-
ations. If the gradient were not available, it could be
approximated using a further level of finite differenc-
ing, without losing the parallelism discussed here.
e Communication—This step requires that the gra-
dient be sent to each processor (n real numbers).
o Arithmetic (per processor)—QOne gradient evalu-
ation, two vector additions (2n operations), and
two vector scalings (2n operations).
2. Forming a; and V;a,— These matrices are computed
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simultaneously by sending the columns of the matrix
V; cyclically around the hypercube, considered as a
ring. At the j-th step of this procedure, processor
! compules (ai)y where j = [(I 4+ j — 1) mod m] +
1. Processor I then computes (Vi);(a;);. Note that
(Vie)t = e (Vi)j(ai)je
o Communication—FEach processor sends/receives
m vectors of size n.
o Arithmetic (per processor )}—Computation of the
two matrices requires 2mn multiplications and
2(m — 1)n additions.

. Forming V‘-‘lﬂ??This matrix is formed in the same

way as Via; above.

¢ Communication—Each processor sends/receives
m vectors of size n.

e Arithmetic (per processor)—Forming the matrix
requires jn multiplications and (j - 1)n additions
on processor j. Since B is a triangular matrix,
the arithmetic costs are slightly lower than be-
fore.

. Forming the right-hand side in (3)—involves m inde-

pendent vector additions.
o Communication—None, after the previous steps
have been completed.
o Arithmetic (per processor)—2 vector additions
{2n operations).

. Determining V;y; and B;,1—consists of a @R fac-

torization of the right-hand side in (3), and can also

be done in parallel {14]. A modified Gram-Schmidt
algorithm is used {6].

e Communication—Processor j sends one n-vector

to n —j processors, and receives (j -- 1) n-vectors.

e Arithmetic {per processor)—Forming of the fac-

torization requires 2nj multiplications, (2jn--j -

n) additions, and one square root on processor j.

. Factorization (4) of T(;j——The matrix L,y is block

lower bi-diagonal with diagonal blocks L, and with
subdiagonal blocks L;;-;. Let D; (diagonal) be the
i-th diagonal block of D). Then the factors of Ty
can be determined via

a; = LyD LT,
Bi = LigaDi LT |,
a; = LiD;LT + L;,;‘-xDp)Lz‘nz: v> L

il

These formulas correspond to LDL” factorizations
or back substitutions. These operations only involve
m x m matrices. We have computed them on a sin-
gle processor since m is small (at most 16) in our
case. They can be performed simultaneously on all
processors, as suggested in {13].
¢ Communication—None.
o Arithmetic (per processor)—-Ignoring lower-order
terms, formation of the new factors costs m3/2
multiplications and additions.

. Forming U,y in (5)- -Write U7,y - {U[Us]- - |U] as

was done with Vi,;. Then UJ; can be computed by
solving (via back substitution)

UlLT =V, ULy, Ug =00




10.

The second term on the right-hand side is formed in
the same way as in step 3 above; combining the two
terms involves m independent vector additions. To
finish computing U; requires repeated back substitu-
tion to solve for the rows of U;.
e Communication—In forming the right-hand side,
each processor sends/receives m vectors of size
n. To solve for U;, processor j sends n (m — j)-
vectors and receives n (m —j —1)-vectors (except
processor 1).
¢ Arithmetic (per processor)—To form the right-
hand side requires jn multiplications and addi-
tions on processor 3. Solving for U; costs n(m—j)
multiplications and additions.

. Forming s(;y in (6)—Divide up s(;) conformally to

Ugiy: s{l-) = [T |s7). Then
sy = -D LTV,

note that V|Tg has only one non-zero component. At
later iterations, we compute 3; from

LiD;s; = —Lii1D;_ys; 1.

These operations only involve vectors and matrices
of order m, and we have chosen to do them simulta-
neously on all processors.
¢ Communication—None.
e Arithmetic (per processor)—This step requires
m? 4+ 2m multiplications and m(m -- 1) additions.

. Forming p:—Divide up U; and s(;) as above. Then

(7) can be written in the form
pi = Pi b Uysi,

and the right-hand side can be formed as the linear
combination of m vectors, with in our case one on
each processor. The Intel hypercube has a built-in
operation of this type.

e Communication —Except for processor 1, each of
the processors sends one n-vector. Processor 1
receives m - | n-vectors.

e Arithmetic {per processor)- ‘There are n multi-
plications per processor. Processor 1 performs
mn additions.

Compute the residual Gp; t+ g (for the convergence
test) —The formulas for the block Lanczos algorithm
give

Gp,' = GU(‘)S(,)
S (Vg Ty + 00 - W)L, s
where W, - GV; - Viay - Vi 187 Since

R T T e T &
VinTiLay sy - VioTw gy Doyl Yo
B -T

Vioving 9

and

00 WL sy WL Ts,,

we obtain Gp, + g = W ([, Ts,). The term in paren-
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theses is compuled simultaneously on all processors,
and the result is the linear combination of n-vectors,
one per processor. The more obvious formula for cal-
culating the residual was not used, to avoid an addi-
tional matrix-vector product. The resulting compu-
tations are almost the same as in the previous step.
e Communication—As in step 9.
¢ Arithmetic (per processor)—Each processor per-
forms n + m?/2 multiplications and m?/2 addi-
tions. Processor | in addition performs n(m - 1)
additions.

The above discussion shows that all the major steps
(that is, all the O(n) steps) in the block Lanczos/CG
algorithm can exploit parallelism. In addition, many of
tl.ese steps correspond to basic linear algebra subroutines
(BLAS), for example, the inner products, linear combina-
tions of vectors, and multiplications of vectors by scalars.
These operations can be carried out using vector hard-
ware or assembly-language instructions on many comput-
ers, in particular the Intel hypercubes and the Alliant. As
a result, this algorithm should be well suited to parallel
and parallel/vector computers.

The description above represents a column-wise or-
ganization of the algorithm. This is appropriate in this
application because the matrix-vector products are pro-
duced one column per processor. Row-wise organizations
are described in [13], where each processor stores a group
of rows from each n x m matrix.

4. Conclusions.

We have presented a truncated-Newton method for min-
imization of a nonlinear function suitable for a parallel
computer. It is based on a block Lanczos inner algorithm
that can exploit parallel gradient evaluations. We believe
that a successful parallel optimization algorithm for gen-
eral use must be able to use parallel function/gradient
evaluations, as this algorithm does. It should be es-
pecially useful when function/gradient evaluations are
costly, and when the number of variables is larger than
the number of processors available.

The algorithm is made up of steps that provide many
opportunities for exploiting parallelism. The costs of
these steps, both arithmetic and communication, have
been described in detail. In addition, the lower level op-
erations offer the possibility of further improvements in
performance when the processors on the parallel com.
puter in addition have vector capabilities.
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A TOOL TO GENERATE FORTRAN PARALLEL CODE FOR THE INTEL IPSC/2 HYPERCUBE

C. Gonazalez, J. Chen, and J. Sarma., George Mason University

ABSTRACT

This paper reports on a software tool (pre-
compiler) for translating sequential Fortran code
to parallel form. We investigated and implemented
a methodology for detecting data dependencies. A
code generator was designed and implemented for
the Intel IPSC/2 hypercube. This research
concentrated on parallelizing do-loop structures,
by dividing the data among the nodes. An outline
and examples of the code generated for the cube
manager and the nodes is presented. We discover
that the use of this precompiler could
potentially be an essential tool to use the
hypercube effectively and efficiently.

Key Words: Pre-compiler, software tool, Fortran,
hypercube, data dependence, code generation,
supercomputer, parallelizing software.

1. INTRODUCTION

Modern supercomputers (i.e. parallel
computers) provide hardware capabilites for
parallel processing, but Jlack the software tools
to support this parallelism. These supercomputer
systems consist of a variety of multiprocessors,
veCctors-processors or multicomputers
interconnected together in some fashion,
Parallel computers are most effectively used when
executing parallel object code. Unfortunately,
most compilers for such systems can only process

sequential source code. The parallelism is
obtained by the use of explicit instructions
inserted in the code. This restriction requires
from the user to explore and detect the

parallelism inside the problem and insert the
commands for the concurrent programming [Seit-
85]. This paper reports on the design and
implementation of techniques for translating
sequentiat code to parallel code. Qur long term
goal objectives is the construction of a tool
that could convert wvaluable "old" sequential code
to run on supercomputers.

Allen and Kennedy ([Alle-82] preprocessed
FORTRAN source code into FORTRAN 8x code in three
steps: program normalization, dependence testing,
and parallel code generation. This is the same
general approach wused in this research. Another
related work is the family of vectorizers (KAPs)
designed by Kuck and Associates. Inc which use

This research was supportedh;bﬁyv—the Center for
Inovative Technology, c¢ontra.t No. SPC-B87-005,
and by the Army Research Office, contract DAALOS:
87-x-0087.

loop interchanging ([Davi-86, Huso-86, Mack-86j.
An important difference with our work is that the
KAPs' wunderlaying machines (ST-100, S-1, and
Cyber 205) have a tightly coupled architecture,
and our work was done for an Intel [IPSC/2
hypercube, which is a loosely coupled
architecture. Padua {Padu-86] made a
comprehensive discussion on two types of parallel
codes for compiler optimization: vector and
concurrent. We Combined the above techniques,
adding some source code optimization in front of
the compiler. Qur precompiler assumes “error-
free" FORTRAN programs as input, and proceeds to
parallelize the data for the do loops (SIMD
model), but not the code.

2. SYSTEM MODEL
The functional decomposition of the model

used for translating sequential code to
executable code has five modules: the lexical
analyser, the data dependence detector, the

parallel code generator, the vectorizer, and the
compiler. The yroduced final object code s
composed of two ¢ fferent sets of code; onc to be
executed in the cube manager, and the other to be
executed in each node of the hypercube.
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Figure.l System Model

In this research we design and implemented the
first three modules of the model described above

(i.e. lexical analizer, data detector and code
generator). We used the Fortran compiler from
Green Hill Software Inc., for generating

executable object code. We did not wused the
available vectorizer software and hardware in
this project.

2.1 The Lexical Analyzer
The lexical analyzer translates Fortran source
code into a sequence of tokens, fills in a symbol
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A BNF of
that

table, and an array description table.
the simplified grammar subsct of Fortran
used, is presented in (Fig.2).

we

<prog> = PROGRAM <«id> { <arredec> }n
<statement> STOP END

<arredec> = DIMENSION <id> <index> { , <id> <index> }
<index> = ( <integer> { , «<integer> }Jn ) (where n=2)
<id> = <letter> { <letter> | <digit> }
<letter> =Al...|Z
<integer> o= <digit> { <digit> }n
<digit> =0]..]9
<statement> = { <dostatement> | <simplestatement> }n
<dostatement> = DO <label> <id> = <doindex> , <doindex>

{, <doindex> } { <statement> }n <latel> CONTINUE
<doindex> = <id> | <integer>
<label> = <digit> { <digit> }n (where n=4)
<simplestatement> = A string of characters not

having a DO as first characters.

Figure.2 Subset of FORTRAN Grummar

2.2 Data Dependence Detector (DDD)
The DDD performs semantic analysis uf the code

to check for parallel do-loops. The input for
this module are the tokens, symbol table, and
array dependence table generated by the Lexical
Analyzer. The semantic information is stored in a
dependence table. This information includes: the
line number where the read-, write-, ard do-
statements were found; also included is
information about the wvariables and arrays on the
left and right hand side of the corresponding
statements. The DDD also outputs the array
indexes and loop <control variables, which are
especially important for multi-dimension and
multi-level do-statements.
2.3 Code Generator

The code generator makes use of information
generated by the Lexical Analyzer, and the data
depe..dence tables generated by the DDD (see
figure 3.). If the current line generated s a
no-parallelizable statement (i.e. with ot data
dependence implications), the code generator
simply gets the information directly from the
fexical analyzer output (step 1). If the current
statement analyzed is a read-, write-, or do-
statement, the code generator uses information
from both the lexical analyzer and the depedence
detector (steps | and 2). The next step
synthesizes the information and writes it to a
buffer. A final step praduces the source for the
host (file name: host.f) and the source fur the
node (file name: node.f).

215

TOKLNS

ANRAY
DESCAIPTION

L I

p=

svsoL

coot
—
CLNIRATOR

TaNLI

otrineence
TanLrs

=

Figure.3 Code Generator and Tables

2.4 Vectorizer

The propose of

the vectorizer software is to
generate  code that will use the vectorizer
hardware board. The code produced by the code
generator could be the input for this software.

Hence, it also does data dependence checking and
modifies

the rode by adding vector calls. The
vector calls are supported by vector library and
a vector pracessor attached to each node. The
available software vectorizer is VAST-2 which
according to user directives, changes program to
expose array operation (Fig.4).
Source FORTRAN
Coge ——————| VAST.2 Executable
For'sam COMPILER Code
T i
}
]
[
Urer
direchiens
DO 20 I=I,N DO 20 I=1,N
$=0.0 Y(D=DDOT(N, A(IL).LNA X(1).1)
DO 10 J=1,N 20 CONTINUE

S=S+A(LI*X()
10 CONTINUE
Y(1)=S
20 CONTINUE

source code vector cail oul put

Figure.4 VAST-2 Program Development Sequence

2.5 FORTRAN Compiler

The iPSC/2 FORTRAN compiler used for this
project was from Green Hills Software, Inc. The
files host.f and node.f were compiled and linked
to produce files: host and node, which are
executable code.

3. DETECTION OF DATA DEPENDENCIES

The data dependencies among the statements

were the deciding factors whether the "do loop”

could be processed in parallel or not.

-




3.1 Basic Assumptions

We made certain assumptions in order to
implement the data dependence analyzer. These
assumptions were necessary So that we could
handle simple loops before we added more

complexities to it. The assumptions made were as

follows:

N There was only one of do
no nesting of do loops was considered.

2) There were no equivalence statements in the
source program.

3) The do loop was a very simple one (i.e. only

level loops, i.e.

arithmetic operations were performed inside
the loop). There were no f{ogical statements
inside the loop (i.e. no transfer of flow
statements), for which more complex analysis
would be required.

4) The array indices were not greater than two.
The DDD can be easily extended to include
indices greater than two, without much
problem.

3.2 Types of Dependencies

Data dependence relations between two
statements determine if they can be executed in
parallel. There are different types of

dependencies between statements [Padu-86).

a) Flow dependence: can exist between two
statements Si and 82, if the data value in
S1 is wused in S2. Since statement S$2 needs
the value from SIi, it cannot be executed

finished executing.
statements are an example of

unless statement SI has
The following
this type of dependence.

S1:  A(l) = B(l) + C()
S2: D(h=AMD*3

b) Antidependence: exists between two
statements S1 and S2, if N
uses a variable which is assigned a new
value in  statement  S2. The following
statements are an example of this type of
dependence.

S1: A =B + C()
S2: B(H=D{)*3
As can be seen from this example the two

statements S1 and S2 cannot be executed in

parailel as S1 wuses the old value of B(l)
which is Jater assigned a new value in S2.

c) Output dependence: between two statements
can exist if a variable which is

assigned a value in one statement and s
later assigned a new

The following

value in another

statement. statements are an
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example of this type of dependence.

S1: A(l) = B(I) + C(D)
S2:D(N)=A(I)*3
S3: A(l) = E(I) + F(1)

contain a wrong value in
executed after statement S3.
to be executed in the

Statement S1 will
A(D) if it s

These statements have

sequence they appear so that all the left
hand side variables contain the correct
value.

is the dependence which
statement to the
within the "if"

d) Control dependence:
occurs from an  "if"
statements which are
statement block.

In the implerientation of the precompiler, we
considered  only the first three types of
dependencies. Control  dependency  was not
analyzed because of the assumption that there

were no logical statements inside the do loop.

3.3 Direction of the Dependencies
The direction of the data dependence relations
to be analyzed the do loop. The
loop is found by
subscripts. The
data dependence

inside
inside the do
and their
types of

also has
data dependencies
analyzing the arrays
following are the
direction:
a) Equal flow dependence:
DO 1001 =1K
S1: A(l) = B(I) + C(I)
S2: D)= A *3
100 CONTINUE

There is flow dependence between statements

S1 and §S2, but this dependence relation

stays within the same iteration of the do
loop. By which we mean that for any
iteration, the value assigned to A(I) in
statement SI is used by statement S2 in the
same iteration. Therefore we c¢an say that
there exists equal flow dependence between
St and S2.
b) Less than flow dependence:
DO 1001 =2, K
St A(l) = B() + C(1)
S2: D(l) = A(I-1)* 3
100 CONTINUE
Statement S2 uses a value of the array

variable A which was assigned during the
previous iteration of the do loop, ie. it
uses an old value of the arrav variable A.




The flow dependence does not stay within the

same iteration instead it flows from

iteration i-1 to iteration i.

¢) Less than antidependence:
DO 1001 =1, K-1
A(l) = B(I) + C(1)
D(I) = A(I+1) * 3
100 CONTINUE

Si:
S2:

the
assigned a new
statement SI.

Here statement S$2 uses an old value of
variable A which is
the next iteration by
S2 an old value there exists
antidependence relation between the two
statements S! and S2. The dependency flow is
from iteration i to iteration i+l.

array
value
Since

in
uses

The DO
statements

is
the
equal f[low dependence relation.

the
an

loop
inside

parallelizable
do

only

if
loop block have

3.4 Semantic Information
The data dependency
information needed by
information
"do
there were
statements

the
The
of the
if
"print”
These
the cube
access fifes.
implemented by using
The four statements: ‘read’,
and 'do loop’, are assigned
to 3) and this is stored
dependency tabie, along with the
the statement the source
addition information about the wvariables
right hand side and left hand side
assignment statement are also stored in arrays.

analyzer generates
the code generator.
the line number
treatment
"read",
the source program.
to be processed by
the nodes can not
table was

required was
Special
any

loop". was required

"write", or
in
had

because

statements
manager,
The dependency
arrays. ‘write’,
integer
the data
line number of
program, In
the
the

‘print’,

values (0 in
in
on
of

4. CODEGENERATION
The code generator produces parallel
the The following
some key such as

do loops

for describe

nodes. sections

the format used by our
buffer

issues,
model, communication overhead,

work load for each node.

size, and

4.1 Communication Between Host and Nodes

A typical iPSC/2 hardware configuration is
shown in Fig.5. The SRM functions
program development,
interface, and gateway

are: support
management, 1/0
The SRM
board (16

and console
RAM, a DOCM

communications

for cube
to host machines.
hardware consists of a processor
MHz 80386, 80387 coprocessor,
terminal port), 8 Mbytes of 32-bit

board, and an Ethernet TCP/IP

mother

E————————————————— S ———
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board. Each node has a pair of 16 MHz 80386 and
80387 coprocessors, 1-8 Mbytes RAM, and a DCM

board. The nodes communicate through message
passing. The topology of the network is a
hypercube. The cube we worked on has 16 nodes

numbered O to 15.

CUBE

SRM

Hout

-

SRM

Hent

Figure 5. ISPC/2 configuration.

Communication Routines:
Our model uses the routines csend and crecv to

communicate between the host and the nodes.

a) csend(MSGTYPE, BUF, MSGLEN, NODEID, NODEPID)
Sends a message between the nodes and the
host, and waits until the whole message goes

out.

-- MSGTYPE is the type of message. Used as
message identifier. -~ BUF is a one
dimension array of integers or reals,

containing the message sent out.

MSGLEN is the number of bytes in BUF (from 1
to MSGLEN) that will be sent out.
NODEID is the destination node/host id.
NODEPID is the process id at the
node/host.

destination

network
at the

out that the

important to point
path for communication is  handled
operating system level, thus, hidden at the
FORTRAN level. Because of the hypercube topalogy

we know the paths followed by each message, and

It is

we could use this information to minimize

communication delays.

blerecy(MSGTYPE, BUF, MSGLEN)
Receives the message from other nodes or
from the host, and waits until the whole
message i1s received.

-- MSGTYPE is the type of message, used as
message identifier. [If the MSGTYPE matches
with that of the c¢send, the message arrives




at its destination.

BUF is one dimension array of integer or

real, containing the message received.
MSGLEN is the upper bound number of bytes in
BUF (from 1 to MSGLEN) will be received.

sending the first
the host

Following is an example for

100 real elements of an array from to

all the nodes.

host: REAL*4 BUFFOUT(2000), A(1000)
INTEGER*4 TYPEOUT, ALLNODES, NPID, LENOUT
DATA ALLNODES /-1/, NPID /1/, TYPEOUT /}/
LENOUT = 400
DO 301 I =1, 100
BUFFOUT(I) = A(l)
301 CONTINUE
CALL CSEND(TYPEOUT, BUFFOUT, LENOUT,
ALLNODES, NPID)
END
node: REAL*4 BUFFIN(2000), A(1000)
INTEGER*4 TYPEIN, HOST, LENIN
DATA TYPEIN /1/, NPID /1/
HOST = MYHOST()
LENIN = 4000
CALL CRECV(TYPEIN, BUFFIN, LENIN)
DO 301 1=1, 100
A(l) = BUFFIN(I)
301 CONTINUE
END
To reduce communication time, we made the
message transferred as long as possible, instead
of passing several short messages.
4.2 Disk 1/0
In the iPSC/2 only the host can do a read or a
write to disk. For a read-statement in the source
code, we generate the following code (Fig.7). For
a write-statement in the source code, we just
simply copy the statement to the host.
4.3 The Host
The host manages the computations of each
node, handles [/0, and communicates with other
hosts. Our host code has features for supporting
the above functions. For example, we set the do-
loop control variables for handling workload of
each node at run time. The host sends messages to
all nodes concurrently, and waits to receive the
results from all the nodes (Fig.8). A set of read
statements in the source code will generate the
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source: READ(I, 110) N1

READ(!, 111) (A(I), 1 = 1, NI)

END
host: READ(I, 110) NI
READ(1, 111) (A(D), I =1, NI)
LENOUT =Nl *4+1*4
BUFFOUT(}1) = Ni
DO 301 1 =1, NI
BUFFOUT() = A(l)
CONTINUE
CALL CSEND(TYPEQUT, BUFFOUT, LENOUT,
ALLNODES, NPID)

301

END

LENIN =2000*4 +1*4

CALL CRECVY(TYPEIN, BUFFIN, LENIN)
N1 = BUFFIN(1)

DO 301 1=2, NI +1

A(I) = BUFFIN()

CONTINUE

node:

301

END

Figure.7 Read-Statements

code described This
inserted read

code will Dbe

statement is

in figure 7.
the

recognized by the code generator.

whenever

4.4 The Nodes

All nodes will
of the node
different data
passing between
The

were

run concurrently the
program, but they will
(SIMD  model). We

host and but
routines,
synchronizes

same copy
execute on
use message
node to
csend and
the operations
all

all

nodes, not

node. message
used to
between host
the data.
nodes get

simplicity

passing
crecy
receives
partitioned (i.e.,
order to maintain the
gencrated. Part of the
project be the analysis
node only the data it

and nodes. Each node
The data was
all the data)
of the

continuation of this
of sending to every

need to perform its computation.

not
in
code
will

will

host the
inside the
values. It
or upper bound
Then, calculates
the loop) endloop
loop) values. Hence,
different endloop

the
statements

Each from
hand side

loop, and

node receives right
do
then
of

its

values of

the do

own
the
value
of

will

loop control
"ceiling",
loop.
of
the

have

calculates its

iterations for
(initial
value

inloop and

(final
different

nodes and




After each do
the node, its results (i.e.
values) and the Iloop control
to the host. When the host
proceeds load the
corresponding destinations.
PROGRAM header.

buffer declaration.

inloop values. loop is completed in
the left hand

values are sent

side
back
receives these values,
to values

into its

normal array and variable declaration.
special constant declaration.
special variable declaration.
equivalence-statements for control variables
and buffers.
data-statement for initializing special constants.
CALL SETPID(HOSTPID).
NNODES = NUMNODES().
CALL LOAD ('node’, ALLNODES, NODEPID).
OPEN data files.
assign control variables.
compute message length (LENOUT) from control variables.
load output buffer (BUFFOUT) with data from right
hand side of do-loop.
CALL CSEND(TYPEOUT, BUFFOUT, LENOUT,
ALLNODES, NODEPID).
compute upper bound length (LENIN) of incoming
message from each node.

DO 768 INODE = 1, NNODES.

CALL CRECV(TYPEIN, BUFFIN, LENIN).

move message to destination array.

768 CONTINUE.

rest of the code.
CALL KILLCUBE(ALLNODES, NODEPID).
CLOSE data files.
STOP.
END.

Figure.8 Host Program Outline

S. IMPLEMENTATION

The precompiler was developed using
FORTRAN/VMS/VAX 8800. Then it was ported to the
IPSC/2. This was done because compared with the
VAX 8800, SRM is single slower for
program development. A complete set of examples
and the source code the Lexical Analizer,
DDD, and Code Generator can be found in
[Gonz-88).

user, and

for

6. CONCLUSIONS AND FUTURE RESEARCH
Many programs have been written in sequential
FORTRAN. A precompiler that generates source code

in parallel form can re-use most of the "old"
FORTRAN programs to run on a supercomputer
without redesigning and rewriting them. Some key
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factors which complicates this project are the
number of nested do loop levels and any operation

done with the indexes of the arrays.

We are working on a tutorial aid for directing
FORTRAN programmer while using our FORTRAN pre-
compiler to generate concurrent program. We plan
that

model

supports stochastic loop
assignment. This flexible
and node to node communication. Another
research will consider complex statements,
such as equivalence- and if-statements. A final
future research is the implementation of the MIMD
model in which the divided into
segments (either subroutines functions),
download each of them to different node,
them with their different data. We
in all of our future models performance
measurement and with other models
(hardware and software).

to work on a model
will require
formats,

future

program is
or
and run
will include

comparison
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MULTIPLY TWISTED N-CUBES FOR PARALLEL COMPUTING

T.-H. Shiau, Paul Blackwell and Kemal Efe, University of Missouri-Columbia

Abstract: It is known that by twisting one pair of edges
of the N dimensional cube, the resulting graph
denoted by TQ(N) has diameter N-1 instead of N. In
this work, we show that by twisting multiple pairs of
edges as well as pairs cf buses (a bus is defined as a
set of edges with certain common properties), the
diameter becomes [2N/3]. The resulting mul.iply
twisted N-cube, denoted by MTQ(N), preserves most
of the desirable topological properties of the ordinary
N-cube for parallel computing. A simple routing
method is presented which can easily be
implemented. Finally we discuss generalizations of
MTQ(N) for which the diameters can be made even
smaller at the expense of more complicated routing.
The smallest diameter which can be achieved by this

approach is [ (N+1)/2].

{C" WORDS: Interconnection networks, Hypercube,
Paralle! processing

1. INTRODUCTION

An n-dimensional hypercube Q(n) = (V,E) is the
graph with N=2" nodes each of which can be labeled
by a unique n-bit binary number such that two nodes
are adjacent it and only if their labels differ in exactly
one bit position. The graph Q(3) is depicted in Figure
1.

Many muitiprocessor computer systems use the
hypercube as the interconnection network, i.e. each

Eigure 1, Q(3) drawn in two different ways

This research is supported in part by AFOSR under
Contract AFOSR-86-0124

220

node of Q(n) is a processing element, usually with
local memory, and the edges of Q(n) are the physical
communication links. For example, the Cosmic Cube
in Seitz (1985), iPSC of Intel Corporation (1985),
NCUBE/1G of NCUBE Corporation (1986) and the
Connection Machine in Hillis [1985) are all
hypercube parallel computers, although the scales
and granularities of parallelism of those computers
very widely.

The popularity of the hypercube for
interconnection networks stems from many of its nice
topological properties. To name a few, the graph is
regular, that is, each node has the same number n of
adjacent nodes, has relatively small diameter which
grows only logarithmically with respect to the total
number of nodes, and has large minimum-bisection
width (MBW) N/2. The MBW is the minimum number
of edges which must be removed from the graph to
separate it into two disconnected graphs with equal
numbers of nodes (or different by 1 if the total number
is odd). Small MBW implies severe limitations of
paralle! data routing between two parts of the system,
while large diameter would mean large propagation
delay in communication. Other properties of Q(n) can
be found in Erdos and Spencer (1979), Folds (1977),
Hart (1976), Muider (1980), and Saad and Schultz
(1985).

Although Q(n) has many desirable properties, it is
shown in Esfahanian, Ni and Sagan (1987) that the
diameter can be reduced by 1 by twisting any single
pair of edges in any shortest cycle. For example
Figure 2 shows the